Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59490 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{1}M_{3}$ | 1.4549 | 1.6441 | 0.885 | [X:[1.3357], M:[1.0035, 0.9598, 0.9965], q:[0.48, 0.5238], qb:[0.5164, 0.4869], phi:[0.3322]] | [X:[[0, 0, 2]], M:[[0, 0, 3], [-1, 1, -9], [0, 0, -3]], q:[[-1, 0, -3], [0, -1, 9]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{6}$ | ${}$ | -4 | t^2.88 + t^2.9 + 2*t^2.99 + t^3.03 + t^3.9 + t^3.99 + t^4.01 + t^4.03 + t^4.12 + t^4.89 + t^4.98 + t^5.02 + t^5.11 + t^5.45 + t^5.47 + t^5.56 + t^5.58 + t^5.76 + t^5.78 + t^5.8 + t^5.87 + 2*t^5.89 + t^5.93 + 3*t^5.98 - 4*t^6. + 2*t^6.02 + t^6.06 - t^6.09 - t^6.13 + t^6.44 + t^6.46 + t^6.55 + t^6.58 + t^6.78 + t^6.8 + 4*t^6.89 + t^6.91 + 2*t^6.93 + 2*t^6.98 + 4*t^7.02 + t^7.04 + t^7.06 - t^7.09 + 2*t^7.11 - t^7.13 + t^7.15 + t^7.31 + t^7.37 + t^7.64 + t^7.7 + t^7.77 + 2*t^7.79 + 4*t^7.88 + 3*t^7.93 + 3*t^7.97 - t^7.99 + 6*t^8.01 + 2*t^8.06 - t^8.08 + 3*t^8.1 - t^8.12 + 2*t^8.15 + t^8.23 + t^8.35 + t^8.37 - t^8.42 + t^8.44 + 2*t^8.46 + t^8.48 + t^8.5 - t^8.52 + 2*t^8.54 - 2*t^8.55 + t^8.61 + t^8.64 - t^8.65 + t^8.66 + t^8.7 + t^8.75 + t^8.77 + 3*t^8.79 + t^8.83 + t^8.86 + 2*t^8.88 - 5*t^8.9 + 4*t^8.92 + t^8.96 + 5*t^8.97 - 8*t^8.99 + t^8.99/y^2 - t^4./y - t^4.99/y - t^6.88/y - t^6.9/y - (2*t^6.99)/y - t^7.03/y - t^7.87/y - t^7.89/y - (2*t^7.98)/y - t^8.02/y + t^8.78/y + (2*t^8.87)/y + t^8.89/y + t^8.91/y + t^8.93/y - t^4.*y - t^4.99*y - t^6.88*y - t^6.9*y - 2*t^6.99*y - t^7.03*y - t^7.87*y - t^7.89*y - 2*t^7.98*y - t^8.02*y + t^8.78*y + 2*t^8.87*y + t^8.89*y + t^8.91*y + t^8.93*y + t^8.99*y^2 | (g2*t^2.88)/(g1*g3^9) + (g2*t^2.9)/(g1*g3^3) + (2*t^2.99)/g3^3 + g3^9*t^3.03 + (g2*t^3.9)/(g1*g3^4) + t^3.99/g3^4 + g3^2*t^4.01 + g3^8*t^4.03 + (g1*g3^8*t^4.12)/g2 + (g2*t^4.89)/(g1*g3^5) + t^4.98/g3^5 + g3^7*t^5.02 + (g1*g3^7*t^5.11)/g2 + (g3^2*t^5.45)/(g1^2*g2) + (g1*g2^2*t^5.47)/g3 + (g1^2*g2*t^5.56)/g3 + (g3^14*t^5.58)/(g1*g2^2) + (g2^2*t^5.76)/(g1^2*g3^18) + (g2^2*t^5.78)/(g1^2*g3^12) + (g2^2*t^5.8)/(g1^2*g3^6) + (g2*t^5.87)/(g1*g3^12) + (2*g2*t^5.89)/(g1*g3^6) + (g2*g3^6*t^5.93)/g1 + (3*t^5.98)/g3^6 - 4*t^6. + 2*g3^6*t^6.02 + g3^18*t^6.06 - (g1*t^6.09)/g2 - (g1*g3^12*t^6.13)/g2 + (g3*t^6.44)/(g1^2*g2) + (g1*g2^2*t^6.46)/g3^2 + (g1^2*g2*t^6.55)/g3^2 + (g3^13*t^6.58)/(g1*g2^2) + (g2^2*t^6.78)/(g1^2*g3^13) + (g2^2*t^6.8)/(g1^2*g3^7) + (4*g2*t^6.89)/(g1*g3^7) + (g2*t^6.91)/(g1*g3) + (2*g2*g3^5*t^6.93)/g1 + (2*t^6.98)/g3^7 + 4*g3^5*t^7.02 + g3^11*t^7.04 + g3^17*t^7.06 - (g1*t^7.09)/(g2*g3) + (2*g1*g3^5*t^7.11)/g2 - (g1*g3^11*t^7.13)/g2 + (g1*g3^17*t^7.15)/g2 + t^7.31/(g1^3*g3^12) + (g2^3*t^7.37)/g3^3 + t^7.44/(g1^2*g2) - (g1*g2^2*t^7.44)/g3^9 + (g1*g2^2*t^7.46)/g3^3 - (g3^6*t^7.46)/(g1^2*g2) + (g1^2*g2*t^7.55)/g3^3 - (g3^6*t^7.55)/(g1*g2^2) - g1^2*g2*g3^3*t^7.57 + (g3^12*t^7.57)/(g1*g2^2) + (g1^3*t^7.64)/g3^3 + (g3^24*t^7.7)/g2^3 + (g2^2*t^7.77)/(g1^2*g3^14) + (2*g2^2*t^7.79)/(g1^2*g3^8) + (4*g2*t^7.88)/(g1*g3^8) + (3*g2*g3^4*t^7.93)/g1 + (3*t^7.97)/g3^8 - t^7.99/g3^2 + 6*g3^4*t^8.01 + 2*g3^16*t^8.06 - (g1*t^8.08)/(g2*g3^2) + (3*g1*g3^4*t^8.1)/g2 - (g1*g3^10*t^8.12)/g2 + (2*g1*g3^16*t^8.15)/g2 + (g1^2*g3^16*t^8.23)/g2^2 + t^8.35/(g1^3*g3) + (g2^3*t^8.37)/g3^4 - t^8.42/(g1^2*g2*g3^7) - (g1*g2^2*t^8.44)/g3^10 + (2*t^8.44)/(g1^2*g2*g3) + (3*g1*g2^2*t^8.46)/g3^4 - (g3^5*t^8.46)/(g1^2*g2) - g1*g2^2*g3^2*t^8.48 + (2*g3^11*t^8.48)/(g1^2*g2) + g1*g2^2*g3^8*t^8.5 - (g1^2*g2*t^8.52)/g3^10 + (2*g1^2*g2*t^8.54)/g3^4 - (2*g3^5*t^8.55)/(g1*g2^2) - 2*g1^2*g2*g3^2*t^8.57 + (2*g3^11*t^8.57)/(g1*g2^2) + g1^2*g2*g3^8*t^8.59 - (g3^17*t^8.59)/(g1*g2^2) + (g3^23*t^8.61)/(g1*g2^2) + (g2^3*t^8.64)/(g1^3*g3^27) - g1^3*g3^2*t^8.65 + (g2^3*t^8.66)/(g1^3*g3^21) + (g2^3*t^8.68)/(g1^3*g3^15) - (g3^17*t^8.68)/g2^3 + (g2^3*t^8.7)/(g1^3*g3^9) + (g2^2*t^8.75)/(g1^2*g3^21) + (g2^2*t^8.77)/(g1^2*g3^15) + (3*g2^2*t^8.79)/(g1^2*g3^9) + (g2^2*g3^3*t^8.83)/g1^2 + (g2*t^8.86)/(g1*g3^15) + (2*g2*t^8.88)/(g1*g3^9) - (5*g2*t^8.9)/(g1*g3^3) + (4*g2*g3^3*t^8.92)/g1 + (g2*g3^15*t^8.96)/g1 + (5*t^8.97)/g3^9 - (8*t^8.99)/g3^3 + t^8.99/(g3^3*y^2) - t^4./(g3*y) - t^4.99/(g3^2*y) - (g2*t^6.88)/(g1*g3^10*y) - (g2*t^6.9)/(g1*g3^4*y) - (2*t^6.99)/(g3^4*y) - (g3^8*t^7.03)/y - (g2*t^7.87)/(g1*g3^11*y) - (g2*t^7.89)/(g1*g3^5*y) - (2*t^7.98)/(g3^5*y) - (g3^7*t^8.02)/y + (g2^2*t^8.78)/(g1^2*g3^12*y) + (2*g2*t^8.87)/(g1*g3^12*y) + (g2*t^8.89)/(g1*g3^6*y) + (g2*t^8.91)/(g1*y) + (g2*g3^6*t^8.93)/(g1*y) - (t^4.*y)/g3 - (t^4.99*y)/g3^2 - (g2*t^6.88*y)/(g1*g3^10) - (g2*t^6.9*y)/(g1*g3^4) - (2*t^6.99*y)/g3^4 - g3^8*t^7.03*y - (g2*t^7.87*y)/(g1*g3^11) - (g2*t^7.89*y)/(g1*g3^5) - (2*t^7.98*y)/g3^5 - g3^7*t^8.02*y + (g2^2*t^8.78*y)/(g1^2*g3^12) + (2*g2*t^8.87*y)/(g1*g3^12) + (g2*t^8.89*y)/(g1*g3^6) + (g2*t^8.91*y)/g1 + (g2*g3^6*t^8.93*y)/g1 + (t^8.99*y^2)/g3^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
60976 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{1}M_{3}$ + ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ | 1.4537 | 1.6401 | 0.8864 | [X:[1.3393], M:[1.0089, 0.9822, 0.9911], q:[0.4912, 0.5179], qb:[0.4999, 0.5088], phi:[0.3304]] | t^2.95 + 2*t^2.97 + t^3. + t^3.08 + t^3.96 + t^3.99 + t^4.02 + t^4.04 + t^4.07 + t^4.96 + t^4.98 + t^5.04 + t^5.06 + t^5.49 + t^5.52 + t^5.54 + t^5.57 + t^5.89 + t^5.92 + 4*t^5.95 + t^5.97 - 3*t^6. - t^3.99/y - t^4.98/y - t^3.99*y - t^4.98*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57467 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{3}$ | 1.4549 | 1.6456 | 0.8841 | [X:[1.331], M:[0.9966, 0.9669], q:[0.4833, 0.513], qb:[0.5201, 0.4767], phi:[0.3345]] | t^2.88 + t^2.9 + t^2.97 + t^2.99 + t^3.01 + t^3.88 + t^3.97 + t^3.99 + t^4.01 + t^4.1 + t^4.89 + t^4.98 + t^5.02 + t^5.11 + t^5.42 + t^5.44 + t^5.53 + t^5.55 + t^5.76 + t^5.78 + t^5.8 + t^5.85 + t^5.87 + 2*t^5.89 + t^5.94 + t^5.96 + 2*t^5.98 - 3*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y | detail |