Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60739 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4955 | 1.727 | 0.866 | [X:[1.3267], M:[0.99, 0.6733, 0.6733], q:[0.505, 0.485], qb:[0.505, 0.485], phi:[0.3367]] | [X:[[0, 0, 2]], M:[[0, 0, 3], [1, -1, 4], [-1, 1, -8]], q:[[-1, 0, -3], [0, -1, 9]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ | ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}X_{1}$, ${ }M_{3}X_{1}$ | 1 | 2*t^2.02 + t^2.91 + 3*t^2.97 + t^3.03 + t^3.92 + t^3.98 + 4*t^4.04 + 3*t^4.93 + 8*t^4.99 + 3*t^5.05 + 2*t^5.44 + 2*t^5.5 + t^5.82 + 3*t^5.88 + 7*t^5.94 + t^6. + 5*t^6.06 + 2*t^6.45 + 2*t^6.5 + t^6.83 + 4*t^6.89 + 8*t^6.95 + 14*t^7.01 + 4*t^7.07 + 2*t^7.4 + 4*t^7.46 + 4*t^7.51 + 2*t^7.57 + 4*t^7.84 + 11*t^7.9 + 18*t^7.96 + 4*t^8.02 + 6*t^8.08 + 2*t^8.35 + 6*t^8.41 + 6*t^8.47 - 2*t^8.58 + t^8.73 + 3*t^8.79 + 8*t^8.85 + 13*t^8.91 + 6*t^8.97 - t^4.01/y - t^5.02/y - (2*t^6.03)/y - t^6.92/y - (3*t^6.98)/y - (2*t^7.04)/y + t^7.93/y + (5*t^7.99)/y - (2*t^8.05)/y + (3*t^8.88)/y + (3*t^8.94)/y - t^4.01*y - t^5.02*y - 2*t^6.03*y - t^6.92*y - 3*t^6.98*y - 2*t^7.04*y + t^7.93*y + 5*t^7.99*y - 2*t^8.05*y + 3*t^8.88*y + 3*t^8.94*y | (g2*t^2.02)/(g1*g3^8) + (g1*g3^4*t^2.02)/g2 + g3^9*t^2.91 + (g2*t^2.97)/(g1*g3^3) + g3^3*t^2.97 + (g1*g3^9*t^2.97)/g2 + t^3.03/g3^3 + g3^8*t^3.92 + g3^2*t^3.98 + (g2^2*t^4.04)/(g1^2*g3^16) + (2*t^4.04)/g3^4 + (g1^2*g3^8*t^4.04)/g2^2 + (g2*g3*t^4.93)/g1 + g3^7*t^4.93 + (g1*g3^13*t^4.93)/g2 + (g2^2*t^4.99)/(g1^2*g3^11) + (2*g2*t^4.99)/(g1*g3^5) + 2*g3*t^4.99 + (2*g1*g3^7*t^4.99)/g2 + (g1^2*g3^13*t^4.99)/g2^2 + (g2*t^5.05)/(g1*g3^11) + t^5.05/g3^5 + (g1*g3*t^5.05)/g2 + (g1*g2^2*t^5.44)/g3 + (g3^14*t^5.44)/(g1*g2^2) + (g1^2*g2*t^5.5)/g3 + (g3^2*t^5.5)/(g1^2*g2) + g3^18*t^5.82 + (g2*g3^6*t^5.88)/g1 + g3^12*t^5.88 + (g1*g3^18*t^5.88)/g2 + (g2*t^5.94)/g1 + (g2^2*t^5.94)/(g1^2*g3^6) + 3*g3^6*t^5.94 + (g1*g3^12*t^5.94)/g2 + (g1^2*g3^18*t^5.94)/g2^2 - 3*t^6. + (2*g2*t^6.)/(g1*g3^6) + (2*g1*g3^6*t^6.)/g2 + (g1*t^6.06)/g2 + (g2^3*t^6.06)/(g1^3*g3^24) + (g2*t^6.06)/(g1*g3^12) + t^6.06/g3^6 + (g1^3*g3^12*t^6.06)/g2^3 + (g1*g2^2*t^6.45)/g3^2 + (g3^13*t^6.45)/(g1*g2^2) + (g1^2*g2*t^6.5)/g3^2 + (g3*t^6.5)/(g1^2*g2) + g3^17*t^6.83 + (g2*g3^5*t^6.89)/g1 + 2*g3^11*t^6.89 + (g1*g3^17*t^6.89)/g2 + (g2^2*t^6.95)/(g1^2*g3^7) + (g2*t^6.95)/(g1*g3) + 4*g3^5*t^6.95 + (g1*g3^11*t^6.95)/g2 + (g1^2*g3^17*t^6.95)/g2^2 + (g2^3*t^7.01)/(g1^3*g3^19) + (2*g2^2*t^7.01)/(g1^2*g3^13) + (3*g2*t^7.01)/(g1*g3^7) + (2*t^7.01)/g3 + (3*g1*g3^5*t^7.01)/g2 + (2*g1^2*g3^11*t^7.01)/g2^2 + (g1^3*g3^17*t^7.01)/g2^3 + (g2^2*t^7.07)/(g1^2*g3^19) + (2*t^7.07)/g3^7 + (g1^2*g3^5*t^7.07)/g2^2 + (g2^3*t^7.4)/g3^3 + (g3^24*t^7.4)/g2^3 + (g2^3*t^7.46)/g3^9 + (g1*g2^2*t^7.46)/g3^3 + (g3^12*t^7.46)/(g1*g2^2) + (g3^18*t^7.46)/g2^3 + t^7.51/(g1^2*g2) + t^7.51/(g1^3*g3^6) + (g1^2*g2*t^7.51)/g3^3 + g1^3*g3^3*t^7.51 + t^7.57/(g1^3*g3^12) + (g1^3*t^7.57)/g3^3 + (g2*g3^10*t^7.84)/g1 + 2*g3^16*t^7.84 + (g1*g3^22*t^7.84)/g2 + (g2^2*t^7.9)/(g1^2*g3^2) + (3*g2*g3^4*t^7.9)/g1 + 3*g3^10*t^7.9 + (3*g1*g3^16*t^7.9)/g2 + (g1^2*g3^22*t^7.9)/g2^2 + (g2^3*t^7.96)/(g1^3*g3^14) + (2*g2^2*t^7.96)/(g1^2*g3^8) + (3*g2*t^7.96)/(g1*g3^2) + 6*g3^4*t^7.96 + (3*g1*g3^10*t^7.96)/g2 + (2*g1^2*g3^16*t^7.96)/g2^2 + (g1^3*g3^22*t^7.96)/g2^3 + (2*g2^2*t^8.02)/(g1^2*g3^14) - (g2*t^8.02)/(g1*g3^8) + (2*t^8.02)/g3^2 - (g1*g3^4*t^8.02)/g2 + (2*g1^2*g3^10*t^8.02)/g2^2 + (g2^4*t^8.08)/(g1^4*g3^32) + (g2^2*t^8.08)/(g1^2*g3^20) + (2*t^8.08)/g3^8 + (g1^2*g3^4*t^8.08)/g2^2 + (g1^4*g3^16*t^8.08)/g2^4 + g1*g2^2*g3^8*t^8.35 + (g3^23*t^8.35)/(g1*g2^2) + (g2^3*t^8.41)/g3^4 + 2*g1^2*g2*g3^8*t^8.41 + (2*g3^11*t^8.41)/(g1^2*g2) + (g3^23*t^8.41)/g2^3 + (2*g1*g2^2*t^8.47)/g3^4 + t^8.47/(g1^3*g3) + g1^3*g3^8*t^8.47 + (2*g3^11*t^8.47)/(g1*g2^2) - (g1*g2^2*t^8.52)/g3^10 + (g1^2*g2*t^8.52)/g3^4 + t^8.52/(g1^2*g2*g3) - (g3^5*t^8.52)/(g1*g2^2) - (g1^2*g2*t^8.58)/g3^10 - t^8.58/(g1^2*g2*g3^7) + g3^27*t^8.73 + (g2*g3^15*t^8.79)/g1 + g3^21*t^8.79 + (g1*g3^27*t^8.79)/g2 + (g2^2*g3^3*t^8.85)/g1^2 + (g2*g3^9*t^8.85)/g1 + 4*g3^15*t^8.85 + (g1*g3^21*t^8.85)/g2 + (g1^2*g3^27*t^8.85)/g2^2 + (g2^3*t^8.91)/(g1^3*g3^9) + (g2^2*t^8.91)/(g1^2*g3^3) + (5*g2*g3^3*t^8.91)/g1 - g3^9*t^8.91 + (5*g1*g3^15*t^8.91)/g2 + (g1^2*g3^21*t^8.91)/g2^2 + (g1^3*g3^27*t^8.91)/g2^3 + (g2^3*t^8.97)/(g1^3*g3^15) + (2*g2^2*t^8.97)/(g1^2*g3^9) - (g2*t^8.97)/(g1*g3^3) + 2*g3^3*t^8.97 - (g1*g3^9*t^8.97)/g2 + (2*g1^2*g3^15*t^8.97)/g2^2 + (g1^3*g3^21*t^8.97)/g2^3 - t^4.01/(g3*y) - t^5.02/(g3^2*y) - (g2*t^6.03)/(g1*g3^9*y) - (g1*g3^3*t^6.03)/(g2*y) - (g3^8*t^6.92)/y - (g2*t^6.98)/(g1*g3^4*y) - (g3^2*t^6.98)/y - (g1*g3^8*t^6.98)/(g2*y) - (g2*t^7.04)/(g1*g3^10*y) - (g1*g3^2*t^7.04)/(g2*y) + (g2*g3*t^7.93)/(g1*y) - (g3^7*t^7.93)/y + (g1*g3^13*t^7.93)/(g2*y) + (g2^2*t^7.99)/(g1^2*g3^11*y) + (g2*t^7.99)/(g1*g3^5*y) + (g3*t^7.99)/y + (g1*g3^7*t^7.99)/(g2*y) + (g1^2*g3^13*t^7.99)/(g2^2*y) - (g2^2*t^8.05)/(g1^2*g3^17*y) + (g2*t^8.05)/(g1*g3^11*y) - (2*t^8.05)/(g3^5*y) + (g1*g3*t^8.05)/(g2*y) - (g1^2*g3^7*t^8.05)/(g2^2*y) + (g2*g3^6*t^8.88)/(g1*y) + (g3^12*t^8.88)/y + (g1*g3^18*t^8.88)/(g2*y) + (g2*t^8.94)/(g1*y) + (g3^6*t^8.94)/y + (g1*g3^12*t^8.94)/(g2*y) - (t^4.01*y)/g3 - (t^5.02*y)/g3^2 - (g2*t^6.03*y)/(g1*g3^9) - (g1*g3^3*t^6.03*y)/g2 - g3^8*t^6.92*y - (g2*t^6.98*y)/(g1*g3^4) - g3^2*t^6.98*y - (g1*g3^8*t^6.98*y)/g2 - (g2*t^7.04*y)/(g1*g3^10) - (g1*g3^2*t^7.04*y)/g2 + (g2*g3*t^7.93*y)/g1 - g3^7*t^7.93*y + (g1*g3^13*t^7.93*y)/g2 + (g2^2*t^7.99*y)/(g1^2*g3^11) + (g2*t^7.99*y)/(g1*g3^5) + g3*t^7.99*y + (g1*g3^7*t^7.99*y)/g2 + (g1^2*g3^13*t^7.99*y)/g2^2 - (g2^2*t^8.05*y)/(g1^2*g3^17) + (g2*t^8.05*y)/(g1*g3^11) - (2*t^8.05*y)/g3^5 + (g1*g3*t^8.05*y)/g2 - (g1^2*g3^7*t^8.05*y)/g2^2 + (g2*g3^6*t^8.88*y)/g1 + g3^12*t^8.88*y + (g1*g3^18*t^8.88*y)/g2 + (g2*t^8.94*y)/g1 + g3^6*t^8.94*y + (g1*g3^12*t^8.94*y)/g2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57745 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.4747 | 1.6859 | 0.8747 | [X:[1.3265], M:[0.9898, 0.6722], q:[0.5057, 0.4841], qb:[0.5045, 0.4853], phi:[0.3367]] | t^2.02 + t^2.91 + 3*t^2.97 + t^3.03 + t^3.92 + 2*t^3.98 + t^4.03 + t^4.04 + t^4.92 + t^4.93 + t^4.98 + 4*t^4.99 + 2*t^5.05 + t^5.43 + t^5.44 + t^5.49 + t^5.5 + t^5.82 + t^5.87 + 2*t^5.88 + t^5.93 + 4*t^5.94 + t^5.95 + t^5.99 - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |