Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58581 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 1.4955 | 1.727 | 0.866 | [X:[], M:[0.6733, 0.99], q:[0.485, 0.505], qb:[0.505, 0.485], phi:[0.3367]] | [X:[], M:[[2, -2], [-3, 3]], q:[[-9, 3], [-3, -3]], qb:[[6, 0], [0, 6]], phi:[[1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | 1 | 2*t^2.02 + t^2.91 + 3*t^2.97 + t^3.03 + t^3.92 + t^3.98 + 4*t^4.04 + 3*t^4.93 + 8*t^4.99 + 3*t^5.05 + 2*t^5.44 + 2*t^5.5 + t^5.82 + 3*t^5.88 + 7*t^5.94 + t^6. + 5*t^6.06 + 2*t^6.45 + 2*t^6.5 + t^6.83 + 4*t^6.89 + 8*t^6.95 + 14*t^7.01 + 4*t^7.07 + 2*t^7.4 + 4*t^7.46 + 4*t^7.51 + 2*t^7.57 + 4*t^7.84 + 11*t^7.9 + 18*t^7.96 + 4*t^8.02 + 6*t^8.08 + 2*t^8.35 + 6*t^8.41 + 6*t^8.47 - 2*t^8.58 + t^8.73 + 3*t^8.79 + 8*t^8.85 + 13*t^8.91 + 6*t^8.97 - t^4.01/y - t^5.02/y - (2*t^6.03)/y - t^6.92/y - (3*t^6.98)/y - (2*t^7.04)/y + t^7.93/y + (5*t^7.99)/y - (2*t^8.05)/y + (3*t^8.88)/y + (3*t^8.94)/y - t^4.01*y - t^5.02*y - 2*t^6.03*y - t^6.92*y - 3*t^6.98*y - 2*t^7.04*y + t^7.93*y + 5*t^7.99*y - 2*t^8.05*y + 3*t^8.88*y + 3*t^8.94*y | (2*g1^2*t^2.02)/g2^2 + (g2^9*t^2.91)/g1^9 + (3*g2^3*t^2.97)/g1^3 + (g1^3*t^3.03)/g2^3 + (g2^8*t^3.92)/g1^8 + (g2^2*t^3.98)/g1^2 + (4*g1^4*t^4.04)/g2^4 + (3*g2^7*t^4.93)/g1^7 + (8*g2*t^4.99)/g1 + (3*g1^5*t^5.05)/g2^5 + (g2^2*t^5.44)/g1^20 + g1^7*g2^11*t^5.44 + t^5.5/(g1^14*g2^4) + g1^13*g2^5*t^5.5 + (g2^18*t^5.82)/g1^18 + (3*g2^12*t^5.88)/g1^12 + (7*g2^6*t^5.94)/g1^6 + t^6. + (5*g1^6*t^6.06)/g2^6 + (g2*t^6.45)/g1^19 + g1^8*g2^10*t^6.45 + t^6.5/(g1^13*g2^5) + g1^14*g2^4*t^6.5 + (g2^17*t^6.83)/g1^17 + (4*g2^11*t^6.89)/g1^11 + (8*g2^5*t^6.95)/g1^5 + (14*g1*t^7.01)/g2 + (4*g1^7*t^7.07)/g2^7 + (g2^6*t^7.4)/g1^24 + g1^3*g2^15*t^7.4 + (2*t^7.46)/g1^18 + 2*g1^9*g2^9*t^7.46 + (2*t^7.51)/(g1^12*g2^6) + 2*g1^15*g2^3*t^7.51 + t^7.57/(g1^6*g2^12) + (g1^21*t^7.57)/g2^3 + (4*g2^16*t^7.84)/g1^16 + (11*g2^10*t^7.9)/g1^10 + (18*g2^4*t^7.96)/g1^4 + (4*g1^2*t^8.02)/g2^2 + (6*g1^8*t^8.08)/g2^8 + (g2^11*t^8.35)/g1^29 + (g2^20*t^8.35)/g1^2 + (3*g2^5*t^8.41)/g1^23 + 3*g1^4*g2^14*t^8.41 + (3*t^8.47)/(g1^17*g2) + 3*g1^10*g2^8*t^8.47 - t^8.58/(g1^5*g2^13) - (g1^22*t^8.58)/g2^4 + (g2^27*t^8.73)/g1^27 + (3*g2^21*t^8.79)/g1^21 + (8*g2^15*t^8.85)/g1^15 + (13*g2^9*t^8.91)/g1^9 + (6*g2^3*t^8.97)/g1^3 - (g1*t^4.01)/(g2*y) - (g1^2*t^5.02)/(g2^2*y) - (2*g1^3*t^6.03)/(g2^3*y) - (g2^8*t^6.92)/(g1^8*y) - (3*g2^2*t^6.98)/(g1^2*y) - (2*g1^4*t^7.04)/(g2^4*y) + (g2^7*t^7.93)/(g1^7*y) + (5*g2*t^7.99)/(g1*y) - (2*g1^5*t^8.05)/(g2^5*y) + (3*g2^12*t^8.88)/(g1^12*y) + (3*g2^6*t^8.94)/(g1^6*y) - (g1*t^4.01*y)/g2 - (g1^2*t^5.02*y)/g2^2 - (2*g1^3*t^6.03*y)/g2^3 - (g2^8*t^6.92*y)/g1^8 - (3*g2^2*t^6.98*y)/g1^2 - (2*g1^4*t^7.04*y)/g2^4 + (g2^7*t^7.93*y)/g1^7 + (5*g2*t^7.99*y)/g1 - (2*g1^5*t^8.05*y)/g2^5 + (3*g2^12*t^8.88*y)/g1^12 + (3*g2^6*t^8.94*y)/g1^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57667 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4974 | 1.7349 | 0.8631 | [X:[], M:[0.6911, 0.9634], q:[0.4817, 0.4817], qb:[0.4817, 0.4817], phi:[0.3455]] | 2*t^2.07 + 5*t^2.89 + 3*t^3.93 + 3*t^4.15 + 14*t^4.96 + 4*t^5.37 + 15*t^5.78 - 2*t^6. - t^4.04/y - t^5.07/y - t^4.04*y - t^5.07*y | detail |