Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60719 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ | 1.4803 | 1.6878 | 0.8771 | [X:[1.3599], M:[0.6749, 0.9253, 0.9203], q:[0.5167, 0.5217], qb:[0.4833, 0.558], phi:[0.32]] | [X:[[0, 0, 2]], M:[[-1, 1, -5], [1, -1, 0], [0, 0, -6]], q:[[-1, 0, 0], [0, -1, 6]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{3}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{6}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$ | ${}$ | -3 | t^2.02 + t^2.76 + t^2.78 + t^2.88 + t^3. + t^3.02 + t^3.96 + t^4.05 + t^4.08 + t^4.18 + t^4.2 + t^4.79 + t^4.8 + t^4.91 + t^4.92 + t^4.94 + t^5.02 + t^5.04 + t^5.14 + t^5.16 + t^5.52 + t^5.53 + t^5.54 + t^5.55 + t^5.63 + 2*t^5.64 + t^5.66 + 3*t^5.76 + t^5.78 + t^5.79 + t^5.88 + t^5.9 - 3*t^6. + t^6.03 + t^6.07 + t^6.1 + t^6.21 + t^6.49 + t^6.59 + t^6.6 + 2*t^6.72 + t^6.81 + t^6.83 + 2*t^6.84 + t^6.86 + t^6.93 + t^6.94 + 2*t^6.96 + t^6.98 + t^7.05 + 2*t^7.06 + 2*t^7.08 + t^7.09 + t^7.17 + t^7.18 + 2*t^7.2 + t^7.21 + t^7.23 - t^7.44 + t^7.45 + t^7.53 + 2*t^7.55 + 2*t^7.56 - t^7.57 + 2*t^7.58 + t^7.65 + t^7.67 + 3*t^7.68 + t^7.7 + t^7.71 + t^7.78 + 2*t^7.79 + 2*t^7.8 + 2*t^7.82 + t^7.9 + t^7.91 + 3*t^7.92 + 2*t^7.94 + t^7.95 - 2*t^8.02 + t^8.04 + t^8.1 + t^8.13 + t^8.14 + 3*t^8.16 + t^8.17 + t^8.23 + t^8.28 + t^8.3 + t^8.31 + t^8.33 + t^8.37 + t^8.38 + 2*t^8.4 + t^8.41 + t^8.42 + t^8.43 + t^8.51 + 3*t^8.52 + 2*t^8.54 + 2*t^8.55 + t^8.57 + 4*t^8.64 + 2*t^8.66 + t^8.67 - 2*t^8.76 + t^8.77 - 2*t^8.78 + t^8.81 + t^8.83 + t^8.85 + t^8.87 + t^8.9 + t^8.91 + t^8.95 + t^8.97 - t^8.98 + t^8.88/y^2 - t^8.98/y^2 - t^3.96/y - t^4.92/y - t^5.98/y - t^6.72/y - t^6.74/y - t^6.84/y - t^6.94/y - t^6.96/y - t^6.98/y - t^7.68/y - t^7.7/y + t^7.79/y + t^7.91/y - t^7.92/y - t^8.01/y + t^8.02/y + t^8.04/y + t^8.54/y + t^8.64/y + t^8.66/y - t^8.75/y + (2*t^8.78)/y + t^8.79/y - t^8.87/y + t^8.9/y - t^8.97/y - t^3.96*y - t^4.92*y - t^5.98*y - t^6.72*y - t^6.74*y - t^6.84*y - t^6.94*y - t^6.96*y - t^6.98*y - t^7.68*y - t^7.7*y + t^7.79*y + t^7.91*y - t^7.92*y - t^8.01*y + t^8.02*y + t^8.04*y + t^8.54*y + t^8.64*y + t^8.66*y - t^8.75*y + 2*t^8.78*y + t^8.79*y - t^8.87*y + t^8.9*y - t^8.97*y + t^8.88*y^2 - t^8.98*y^2 | (g2*t^2.02)/(g1*g3^5) + t^2.76/g3^6 + (g1*t^2.78)/g2 + t^2.88/g3^3 + t^3. + (g1*g3^6*t^3.02)/g2 + t^3.96/g3 + (g2^2*t^4.05)/(g1^2*g3^10) + g3^2*t^4.08 + (g2*t^4.18)/(g1*g3) + g3^5*t^4.2 + (g2*t^4.79)/(g1*g3^11) + t^4.8/g3^5 + (g2*t^4.91)/(g1*g3^8) + t^4.92/g3^2 + (g1*g3^4*t^4.94)/g2 + (g2*t^5.02)/(g1*g3^5) + g3*t^5.04 + (g2*t^5.14)/(g1*g3^2) + g3^4*t^5.16 + t^5.52/g3^12 + (g1^2*g2*t^5.53)/g3 + (g1*t^5.54)/(g2*g3^6) + (g1^2*t^5.55)/g2^2 + (g3^5*t^5.63)/(g1^2*g2) + t^5.64/g3^9 + (g3^11*t^5.64)/(g1*g2^2) + (g1*t^5.66)/(g2*g3^3) + (2*t^5.76)/g3^6 + (g1*g2^2*t^5.76)/g3 + (g1*t^5.78)/g2 + (g1^2*g3^6*t^5.79)/g2^2 + t^5.88/g3^3 + (g1*g3^3*t^5.9)/g2 - 3*t^6. + (g1^2*g3^12*t^6.03)/g2^2 + (g2^3*t^6.07)/(g1^3*g3^15) + (g2*t^6.1)/(g1*g3^3) + (g2^2*t^6.21)/(g1^2*g3^6) + (g1^2*g2*t^6.49)/g3^2 + (g3^4*t^6.59)/(g1^2*g2) + (g3^10*t^6.6)/(g1*g2^2) + t^6.72/g3^7 + (g1*g2^2*t^6.72)/g3^2 + (g2^2*t^6.81)/(g1^2*g3^16) + (g2*t^6.83)/(g1*g3^10) + (2*t^6.84)/g3^4 + (g1*g3^2*t^6.86)/g2 + (g2^2*t^6.93)/(g1^2*g3^13) + (g2*t^6.94)/(g1*g3^7) + (2*t^6.96)/g3 + (g1*g3^5*t^6.98)/g2 + (g2^2*t^7.05)/(g1^2*g3^10) + (2*g2*t^7.06)/(g1*g3^4) + 2*g3^2*t^7.08 + (g1*g3^8*t^7.09)/g2 + (g2^2*t^7.17)/(g1^2*g3^7) + (g2*t^7.18)/(g1*g3) + 2*g3^5*t^7.2 + (g1*g3^11*t^7.21)/g2 + (g1^3*t^7.23)/g3^3 - (g3^6*t^7.44)/(g1*g2^2) + (g1^2*g2*t^7.45)/g3^3 + t^7.53/(g1^3*g3^3) + (g2*t^7.55)/(g1*g3^17) + (g3^3*t^7.55)/(g1^2*g2) + t^7.56/g3^11 + (g3^9*t^7.56)/(g1*g2^2) - g1^2*g2*t^7.57 + (g1*t^7.58)/(g2*g3^5) + (g3^15*t^7.58)/g2^3 + t^7.65/g1^3 + (g2*t^7.67)/(g1*g3^14) + (2*t^7.68)/g3^8 + (g1*g2^2*t^7.68)/g3^3 + (g1*t^7.7)/(g2*g3^2) + (g1^2*g3^4*t^7.71)/g2^2 + (g2^3*t^7.78)/g3^6 + (2*g2*t^7.79)/(g1*g3^11) + (2*t^7.8)/g3^5 + (2*g1*g3*t^7.82)/g2 + (g2^3*t^7.9)/g3^3 + (g2*t^7.91)/(g1*g3^8) + (3*t^7.92)/g3^2 + (2*g1*g3^4*t^7.94)/g2 + (g1^2*g3^10*t^7.95)/g2^2 - (2*g2*t^8.02)/(g1*g3^5) + g3*t^8.04 + (g2^4*t^8.1)/(g1^4*g3^20) + (g2^2*t^8.13)/(g1^2*g3^8) + (g2*t^8.14)/(g1*g3^2) + 3*g3^4*t^8.16 + (g1*g3^10*t^8.17)/g2 + (g2^3*t^8.23)/(g1^3*g3^11) + t^8.28/g3^18 + (g1*t^8.3)/(g2*g3^12) + (g1^2*t^8.31)/(g2^2*g3^6) + (g1^3*t^8.33)/g2^3 + (g2^2*t^8.37)/(g1^2*g3^2) + (g2*g3^4*t^8.38)/g1 + t^8.4/g3^15 + g3^10*t^8.4 + (g1^2*g2*t^8.41)/g3^4 + (g1*t^8.42)/(g2*g3^9) + (g1^2*t^8.43)/(g2^2*g3^3) + (g3^2*t^8.51)/(g1^2*g2) + (2*t^8.52)/g3^12 + (g3^8*t^8.52)/(g1*g2^2) + (2*g1*t^8.54)/(g2*g3^6) + (g1^2*t^8.55)/g2^2 + g1^3*g3^5*t^8.55 + (g1^3*g3^6*t^8.57)/g2^3 + (2*t^8.64)/g3^9 + (g1*g2^2*t^8.64)/g3^4 + (g3^11*t^8.64)/(g1*g2^2) + (g1*t^8.66)/(g2*g3^3) + (g3^17*t^8.66)/g2^3 + (g1^2*g3^3*t^8.67)/g2^2 - (2*t^8.76)/g3^6 + g1^2*g2*g3^5*t^8.77 - (2*g1*t^8.78)/g2 + (g1^3*g3^12*t^8.81)/g2^3 + (g2^3*t^8.83)/(g1^3*g3^21) + (g2^2*t^8.85)/(g1^2*g3^15) + (g2*t^8.87)/(g1*g3^9) + (g1*g3^3*t^8.9)/g2 + (g1^2*g3^9*t^8.91)/g2^2 + (g2^3*t^8.95)/(g1^3*g3^18) + (g2^2*t^8.97)/(g1^2*g3^12) - (g2*t^8.98)/(g1*g3^6) + t^8.88/(g3^3*y^2) - (g2*t^8.98)/(g1*g3^6*y^2) - t^3.96/(g3*y) - t^4.92/(g3^2*y) - (g2*t^5.98)/(g1*g3^6*y) - t^6.72/(g3^7*y) - (g1*t^6.74)/(g2*g3*y) - t^6.84/(g3^4*y) - (g2*t^6.94)/(g1*g3^7*y) - t^6.96/(g3*y) - (g1*g3^5*t^6.98)/(g2*y) - t^7.68/(g3^8*y) - (g1*t^7.7)/(g2*g3^2*y) + (g2*t^7.79)/(g1*g3^11*y) + (g2*t^7.91)/(g1*g3^8*y) - t^7.92/(g3^2*y) - (g2^2*t^8.01)/(g1^2*g3^11*y) + (g2*t^8.02)/(g1*g3^5*y) + (g3*t^8.04)/y + (g1*t^8.54)/(g2*g3^6*y) + t^8.64/(g3^9*y) + (g1*t^8.66)/(g2*g3^3*y) - (g2*t^8.75)/(g1*g3^12*y) + (2*g1*t^8.78)/(g2*y) + (g1^2*g3^6*t^8.79)/(g2^2*y) - (g2*t^8.87)/(g1*g3^9*y) + (g1*g3^3*t^8.9)/(g2*y) - (g2^2*t^8.97)/(g1^2*g3^12*y) - (t^3.96*y)/g3 - (t^4.92*y)/g3^2 - (g2*t^5.98*y)/(g1*g3^6) - (t^6.72*y)/g3^7 - (g1*t^6.74*y)/(g2*g3) - (t^6.84*y)/g3^4 - (g2*t^6.94*y)/(g1*g3^7) - (t^6.96*y)/g3 - (g1*g3^5*t^6.98*y)/g2 - (t^7.68*y)/g3^8 - (g1*t^7.7*y)/(g2*g3^2) + (g2*t^7.79*y)/(g1*g3^11) + (g2*t^7.91*y)/(g1*g3^8) - (t^7.92*y)/g3^2 - (g2^2*t^8.01*y)/(g1^2*g3^11) + (g2*t^8.02*y)/(g1*g3^5) + g3*t^8.04*y + (g1*t^8.54*y)/(g2*g3^6) + (t^8.64*y)/g3^9 + (g1*t^8.66*y)/(g2*g3^3) - (g2*t^8.75*y)/(g1*g3^12) + (2*g1*t^8.78*y)/g2 + (g1^2*g3^6*t^8.79*y)/g2^2 - (g2*t^8.87*y)/(g1*g3^9) + (g1*g3^3*t^8.9*y)/g2 - (g2^2*t^8.97*y)/(g1^2*g3^12) + (t^8.88*y^2)/g3^3 - (g2*t^8.98*y^2)/(g1*g3^6) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57416 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4757 | 1.6826 | 0.877 | [X:[1.3398], M:[0.6917, 0.9589], q:[0.5156, 0.4938], qb:[0.4844, 0.5255], phi:[0.3301]] | t^2.075 + t^2.877 + t^2.935 + t^2.971 + t^3. + t^3.058 + t^3.99 + t^4.019 + t^4.048 + t^4.114 + t^4.15 + t^4.915 + t^4.952 + t^4.981 + t^5.01 + t^5.039 + t^5.046 + t^5.075 + t^5.104 + t^5.133 + t^5.474 + t^5.5 + t^5.565 + t^5.597 + t^5.753 + t^5.811 + t^5.848 + t^5.869 + t^5.906 + t^5.935 + t^5.942 + t^5.971 + t^5.993 - 3*t^6. - t^3.99/y - t^4.981/y - t^3.99*y - t^4.981*y | detail |