Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57416 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4757 | 1.6826 | 0.877 | [X:[1.3398], M:[0.6917, 0.9589], q:[0.5156, 0.4938], qb:[0.4844, 0.5255], phi:[0.3301]] | [X:[[0, 0, 2]], M:[[-1, 1, -5], [1, -1, 0]], q:[[-1, 0, 0], [0, -1, 6]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{3}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | ${}$ | -3 | t^2.075 + t^2.877 + t^2.935 + t^2.971 + t^3. + t^3.058 + t^3.99 + t^4.019 + t^4.048 + t^4.114 + t^4.15 + t^4.915 + t^4.952 + t^4.981 + t^5.01 + t^5.039 + t^5.046 + t^5.075 + t^5.104 + t^5.133 + t^5.474 + t^5.5 + t^5.565 + t^5.597 + t^5.753 + t^5.811 + t^5.848 + t^5.869 + t^5.906 + t^5.935 + t^5.942 + t^5.971 + t^5.993 - 3*t^6. + t^6.029 + t^6.058 + t^6.094 + t^6.116 + t^6.189 + t^6.225 + t^6.464 + t^6.49 + t^6.555 + t^6.587 + t^6.896 + t^6.925 + t^6.954 + t^6.961 + t^6.983 + t^6.99 + 2*t^7.019 + t^7.027 + 3*t^7.048 + t^7.077 + 2*t^7.085 + t^7.106 + t^7.114 + t^7.121 + t^7.15 + t^7.172 + t^7.179 + t^7.208 + t^7.331 + t^7.415 - t^7.451 + t^7.454 + t^7.48 - t^7.483 + t^7.546 + t^7.578 + t^7.611 + t^7.64 + t^7.672 + t^7.701 + t^7.792 + t^7.828 + t^7.85 + 2*t^7.886 + 2*t^7.915 + t^7.923 + t^7.952 + 2*t^7.973 + 2*t^7.981 + 2*t^8.01 + t^8.017 + 4*t^8.039 + t^8.068 - 2*t^8.075 + 2*t^8.097 + 2*t^8.104 + t^8.133 + 2*t^8.162 + t^8.169 + t^8.191 + t^8.227 + t^8.264 + t^8.3 + t^8.408 - t^8.416 + t^8.435 - t^8.442 + t^8.445 + t^8.471 + t^8.5 - t^8.507 + 2*t^8.532 + t^8.536 - t^8.539 + t^8.558 + t^8.568 + t^8.623 + t^8.63 + t^8.655 + t^8.688 + t^8.724 + t^8.746 + t^8.782 + t^8.804 + t^8.819 + t^8.84 + t^8.869 - 2*t^8.877 + 2*t^8.906 + t^8.913 + t^8.927 - 4*t^8.935 + t^8.942 + 2*t^8.964 + t^8.993 + t^8.971/y^2 - t^3.99/y - t^4.981/y - t^6.065/y - t^6.867/y - t^6.925/y - t^6.961/y - t^6.99/y - t^7.048/y - t^7.056/y - t^7.857/y - t^7.981/y + t^8.01/y - t^8.039/y + t^8.046/y + t^8.075/y + t^8.133/y - t^8.14/y + t^8.811/y + t^8.848/y + t^8.877/y + t^8.906/y + (2*t^8.935)/y - t^8.942/y + t^8.993/y - t^3.99*y - t^4.981*y - t^6.065*y - t^6.867*y - t^6.925*y - t^6.961*y - t^6.99*y - t^7.048*y - t^7.056*y - t^7.857*y - t^7.981*y + t^8.01*y - t^8.039*y + t^8.046*y + t^8.075*y + t^8.133*y - t^8.14*y + t^8.811*y + t^8.848*y + t^8.877*y + t^8.906*y + 2*t^8.935*y - t^8.942*y + t^8.993*y + t^8.971*y^2 | (g2*t^2.075)/(g1*g3^5) + (g1*t^2.877)/g2 + (g1*g3^6*t^2.935)/g2 + t^2.971/g3^3 + t^3. + g3^6*t^3.058 + t^3.99/g3 + g3^2*t^4.019 + g3^5*t^4.048 + (g2*t^4.114)/(g1*g3) + (g2^2*t^4.15)/(g1^2*g3^10) + (g1*g3^4*t^4.915)/g2 + t^4.952/g3^5 + t^4.981/g3^2 + g3*t^5.01 + g3^4*t^5.039 + (g2*t^5.046)/(g1*g3^8) + (g2*t^5.075)/(g1*g3^5) + (g2*t^5.104)/(g1*g3^2) + (g2*g3*t^5.133)/g1 + (g1^2*g2*t^5.474)/g3 + (g3^11*t^5.5)/(g1*g2^2) + (g3^5*t^5.565)/(g1^2*g2) + (g1*g2^2*t^5.597)/g3 + (g1^2*t^5.753)/g2^2 + (g1^2*g3^6*t^5.811)/g2^2 + (g1*t^5.848)/(g2*g3^3) + (g1^2*g3^12*t^5.869)/g2^2 + (g1*g3^3*t^5.906)/g2 + (g1*g3^6*t^5.935)/g2 + t^5.942/g3^6 + t^5.971/g3^3 + (g1*g3^12*t^5.993)/g2 - 3*t^6. + g3^3*t^6.029 + g3^6*t^6.058 + (g2*t^6.094)/(g1*g3^3) + g3^12*t^6.116 + (g2^2*t^6.189)/(g1^2*g3^6) + (g2^3*t^6.225)/(g1^3*g3^15) + (g1^2*g2*t^6.464)/g3^2 + (g3^10*t^6.49)/(g1*g2^2) + (g3^4*t^6.555)/(g1^2*g2) + (g1*g2^2*t^6.587)/g3^2 + (g1*g3^2*t^6.896)/g2 + (g1*g3^5*t^6.925)/g2 + (g1*g3^8*t^6.954)/g2 + t^6.961/g3^4 + (g1*g3^11*t^6.983)/g2 + t^6.99/g3 + 2*g3^2*t^7.019 + (g2*t^7.027)/(g1*g3^10) + 3*g3^5*t^7.048 + g3^8*t^7.077 + (2*g2*t^7.085)/(g1*g3^4) + g3^11*t^7.106 + (g2*t^7.114)/(g1*g3) + (g2^2*t^7.121)/(g1^2*g3^13) + (g2^2*t^7.15)/(g1^2*g3^10) + (g2*g3^5*t^7.172)/g1 + (g2^2*t^7.179)/(g1^2*g3^7) + (g2^2*t^7.208)/(g1^2*g3^4) + (g1^3*t^7.331)/g3^3 + (g3^15*t^7.415)/g2^3 - (g3^6*t^7.451)/(g1*g2^2) + (g1^2*g2*t^7.454)/g3^3 + (g3^9*t^7.48)/(g1*g2^2) - g1^2*g2*t^7.483 + (g3^3*t^7.546)/(g1^2*g2) + (g1*g2^2*t^7.578)/g3^3 + t^7.611/(g1^3*g3^3) + t^7.64/g1^3 + (g2^3*t^7.672)/g3^6 + (g2^3*t^7.701)/g3^3 + (g1^2*g3^4*t^7.792)/g2^2 + (g1*t^7.828)/(g2*g3^5) + (g1^2*g3^10*t^7.85)/g2^2 + (2*g1*g3*t^7.886)/g2 + (2*g1*g3^4*t^7.915)/g2 + t^7.923/g3^8 + t^7.952/g3^5 + (2*g1*g3^10*t^7.973)/g2 + (2*t^7.981)/g3^2 + 2*g3*t^8.01 + (g2*t^8.017)/(g1*g3^11) + 4*g3^4*t^8.039 + g3^7*t^8.068 - (2*g2*t^8.075)/(g1*g3^5) + 2*g3^10*t^8.097 + (2*g2*t^8.104)/(g1*g3^2) + (g2*g3*t^8.133)/g1 + (2*g2*g3^4*t^8.162)/g1 + (g2^2*t^8.169)/(g1^2*g3^8) + (g2*g3^7*t^8.191)/g1 + (g2^2*t^8.227)/(g1^2*g3^2) + (g2^3*t^8.264)/(g1^3*g3^11) + (g2^4*t^8.3)/(g1^4*g3^20) + g1^3*g3^5*t^8.408 - (g1^2*g2*t^8.416)/g3^7 + (g3^17*t^8.435)/g2^3 - (g3^5*t^8.442)/(g1*g2^2) + (g1^2*g2*t^8.445)/g3^4 + (g3^8*t^8.471)/(g1*g2^2) + (g3^11*t^8.5)/(g1*g2^2) - t^8.507/(g1^2*g2*g3) + 2*g1^2*g2*g3^5*t^8.532 + (g3^2*t^8.536)/(g1^2*g2) - (g1*g2^2*t^8.539)/g3^7 + (g3^17*t^8.558)/(g1*g2^2) + (g1*g2^2*t^8.568)/g3^4 + (g3^11*t^8.623)/(g1^2*g2) + (g1^3*t^8.63)/g2^3 + g1*g2^2*g3^5*t^8.655 + (g1^3*g3^6*t^8.688)/g2^3 + (g1^2*t^8.724)/(g2^2*g3^3) + (g1^3*g3^12*t^8.746)/g2^3 + (g1^2*g3^3*t^8.782)/g2^2 + (g1^3*g3^18*t^8.804)/g2^3 + (g1*t^8.819)/(g2*g3^6) + (g1^2*g3^9*t^8.84)/g2^2 + (g1^2*g3^12*t^8.869)/g2^2 - (2*g1*t^8.877)/g2 + (2*g1*g3^3*t^8.906)/g2 + t^8.913/g3^9 + (g1^2*g3^18*t^8.927)/g2^2 - (4*g1*g3^6*t^8.935)/g2 + t^8.942/g3^6 + (2*g1*g3^9*t^8.964)/g2 + (g1*g3^12*t^8.993)/g2 + t^8.971/(g3^3*y^2) - t^3.99/(g3*y) - t^4.981/(g3^2*y) - (g2*t^6.065)/(g1*g3^6*y) - (g1*t^6.867)/(g2*g3*y) - (g1*g3^5*t^6.925)/(g2*y) - t^6.961/(g3^4*y) - t^6.99/(g3*y) - (g3^5*t^7.048)/y - (g2*t^7.056)/(g1*g3^7*y) - (g1*t^7.857)/(g2*g3^2*y) - t^7.981/(g3^2*y) + (g3*t^8.01)/y - (g3^4*t^8.039)/y + (g2*t^8.046)/(g1*g3^8*y) + (g2*t^8.075)/(g1*g3^5*y) + (g2*g3*t^8.133)/(g1*y) - (g2^2*t^8.14)/(g1^2*g3^11*y) + (g1^2*g3^6*t^8.811)/(g2^2*y) + (g1*t^8.848)/(g2*g3^3*y) + (g1*t^8.877)/(g2*y) + (g1*g3^3*t^8.906)/(g2*y) + (2*g1*g3^6*t^8.935)/(g2*y) - t^8.942/(g3^6*y) + (g1*g3^12*t^8.993)/(g2*y) - (t^3.99*y)/g3 - (t^4.981*y)/g3^2 - (g2*t^6.065*y)/(g1*g3^6) - (g1*t^6.867*y)/(g2*g3) - (g1*g3^5*t^6.925*y)/g2 - (t^6.961*y)/g3^4 - (t^6.99*y)/g3 - g3^5*t^7.048*y - (g2*t^7.056*y)/(g1*g3^7) - (g1*t^7.857*y)/(g2*g3^2) - (t^7.981*y)/g3^2 + g3*t^8.01*y - g3^4*t^8.039*y + (g2*t^8.046*y)/(g1*g3^8) + (g2*t^8.075*y)/(g1*g3^5) + (g2*g3*t^8.133*y)/g1 - (g2^2*t^8.14*y)/(g1^2*g3^11) + (g1^2*g3^6*t^8.811*y)/g2^2 + (g1*t^8.848*y)/(g2*g3^3) + (g1*t^8.877*y)/g2 + (g1*g3^3*t^8.906*y)/g2 + (2*g1*g3^6*t^8.935*y)/g2 - (t^8.942*y)/g3^6 + (g1*g3^12*t^8.993*y)/g2 + (t^8.971*y^2)/g3^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
60719 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ | 1.4803 | 1.6878 | 0.8771 | [X:[1.3599], M:[0.6749, 0.9253, 0.9203], q:[0.5167, 0.5217], qb:[0.4833, 0.558], phi:[0.32]] | t^2.02 + t^2.76 + t^2.78 + t^2.88 + t^3. + t^3.02 + t^3.96 + t^4.05 + t^4.08 + t^4.18 + t^4.2 + t^4.79 + t^4.8 + t^4.91 + t^4.92 + t^4.94 + t^5.02 + t^5.04 + t^5.14 + t^5.16 + t^5.52 + t^5.53 + t^5.54 + t^5.55 + t^5.63 + 2*t^5.64 + t^5.66 + 3*t^5.76 + t^5.78 + t^5.79 + t^5.88 + t^5.9 - 3*t^6. - t^3.96/y - t^4.92/y - t^5.98/y - t^3.96*y - t^4.92*y - t^5.98*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47900 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.495 | 1.7254 | 0.8664 | [M:[0.6707], q:[0.4996, 0.493], qb:[0.5004, 0.4921], phi:[0.3358]] | t^2.012 + t^2.015 + t^2.955 + t^2.975 + t^2.98 + t^3. + t^3.022 + t^3.963 + t^3.982 + t^4.007 + t^4.024 + t^4.027 + t^4.03 + t^4.968 + 2*t^4.97 + t^4.987 + 2*t^4.99 + t^4.993 + 2*t^4.995 + t^5.012 + 2*t^5.015 + t^5.035 + t^5.037 + t^5.462 + t^5.464 + t^5.484 + t^5.486 + t^5.911 + t^5.93 + t^5.936 + t^5.95 + 2*t^5.955 + t^5.961 + t^5.975 + 2*t^5.978 + t^5.995 + 2*t^5.997 - 3*t^6. - t^4.007/y - t^5.015/y - t^4.007*y - t^5.015*y | detail |