Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
595 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ | 0.7674 | 0.9598 | 0.7995 | [M:[0.8347, 0.8347, 0.8347, 0.8347, 1.0, 0.6694], q:[0.6653, 0.5], qb:[0.5, 0.6653], phi:[0.4174]] | [M:[[-4, 1, 0], [0, -1, -4], [-4, -1, 0], [0, 1, -4], [0, 0, 0], [-4, 0, -4]], q:[[4, 0, 0], [0, -1, 0]], qb:[[0, 1, 0], [0, 0, 4]], phi:[[-1, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{2}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{6}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}\phi_{1}^{2}$ | ${}$ | -7 | t^2.008 + 5*t^2.504 + t^3. + t^4.017 + 3*t^4.252 + 5*t^4.512 + 4*t^4.748 + 16*t^5.008 + 3*t^5.244 + t^5.504 - 7*t^6. + t^6.025 + 3*t^6.26 - 4*t^6.496 + 5*t^6.521 + 15*t^6.756 - t^6.992 + 16*t^7.017 + 19*t^7.252 + 36*t^7.512 + 8*t^7.748 - 9*t^8.008 + t^8.033 - 8*t^8.244 + 3*t^8.269 - 34*t^8.504 + 5*t^8.529 - 7*t^8.74 + 15*t^8.765 - t^4.252/y - t^6.26/y - (5*t^6.756)/y + (5*t^7.512)/y + (5*t^7.748)/y + (11*t^8.008)/y + t^8.244/y - t^8.269/y + (5*t^8.504)/y - (5*t^8.765)/y - t^4.252*y - t^6.26*y - 5*t^6.756*y + 5*t^7.512*y + 5*t^7.748*y + 11*t^8.008*y + t^8.244*y - t^8.269*y + 5*t^8.504*y - 5*t^8.765*y | t^2.008/(g1^4*g3^4) + t^2.504/(g1^4*g2) + (g2*t^2.504)/g1^4 + t^2.504/(g2*g3^4) + (g2*t^2.504)/g3^4 + t^2.504/(g1^2*g3^2) + t^3. + t^4.017/(g1^8*g3^8) + t^4.252/(g1*g3) + t^4.252/(g1*g2^2*g3) + (g2^2*t^4.252)/(g1*g3) + t^4.512/(g1^4*g2*g3^8) + (g2*t^4.512)/(g1^4*g3^8) + t^4.512/(g1^6*g3^6) + t^4.512/(g1^8*g2*g3^4) + (g2*t^4.512)/(g1^8*g3^4) + (g1^3*t^4.748)/(g2*g3) + (g1^3*g2*t^4.748)/g3 + (g3^3*t^4.748)/(g1*g2) + (g2*g3^3*t^4.748)/g1 + t^5.008/g1^8 + t^5.008/(g1^8*g2^2) + (g2^2*t^5.008)/g1^8 + t^5.008/g3^8 + t^5.008/(g2^2*g3^8) + (g2^2*t^5.008)/g3^8 + t^5.008/(g1^2*g2*g3^6) + (g2*t^5.008)/(g1^2*g3^6) + (4*t^5.008)/(g1^4*g3^4) + t^5.008/(g1^4*g2^2*g3^4) + (g2^2*t^5.008)/(g1^4*g3^4) + t^5.008/(g1^6*g2*g3^2) + (g2*t^5.008)/(g1^6*g3^2) + (g1^7*t^5.244)/g3 + g1^3*g3^3*t^5.244 + (g3^7*t^5.244)/g1 + t^5.504/(g1^2*g3^2) - 3*t^6. - t^6./g2^2 - g2^2*t^6. - (g1^4*t^6.)/g3^4 - (g3^4*t^6.)/g1^4 + t^6.025/(g1^12*g3^12) + t^6.26/(g1^5*g3^5) + t^6.26/(g1^5*g2^2*g3^5) + (g2^2*t^6.26)/(g1^5*g3^5) - (g1^4*t^6.496)/g2 - g1^4*g2*t^6.496 - (g3^4*t^6.496)/g2 - g2*g3^4*t^6.496 + t^6.521/(g1^8*g2*g3^12) + (g2*t^6.521)/(g1^8*g3^12) + t^6.521/(g1^10*g3^10) + t^6.521/(g1^12*g2*g3^8) + (g2*t^6.521)/(g1^12*g3^8) + t^6.756/(g1*g2^3*g3^5) + (2*t^6.756)/(g1*g2*g3^5) + (2*g2*t^6.756)/(g1*g3^5) + (g2^3*t^6.756)/(g1*g3^5) + t^6.756/(g1^3*g3^3) + t^6.756/(g1^3*g2^2*g3^3) + (g2^2*t^6.756)/(g1^3*g3^3) + t^6.756/(g1^5*g2^3*g3) + (2*t^6.756)/(g1^5*g2*g3) + (2*g2*t^6.756)/(g1^5*g3) + (g2^3*t^6.756)/(g1^5*g3) - g1^4*g3^4*t^6.992 + t^7.017/(g1^4*g3^12) + t^7.017/(g1^4*g2^2*g3^12) + (g2^2*t^7.017)/(g1^4*g3^12) + t^7.017/(g1^6*g2*g3^10) + (g2*t^7.017)/(g1^6*g3^10) + (4*t^7.017)/(g1^8*g3^8) + t^7.017/(g1^8*g2^2*g3^8) + (g2^2*t^7.017)/(g1^8*g3^8) + t^7.017/(g1^10*g2*g3^6) + (g2*t^7.017)/(g1^10*g3^6) + t^7.017/(g1^12*g3^4) + t^7.017/(g1^12*g2^2*g3^4) + (g2^2*t^7.017)/(g1^12*g3^4) + (2*g1^3*t^7.252)/g3^5 + (g1^3*t^7.252)/(g2^2*g3^5) + (g1^3*g2^2*t^7.252)/g3^5 + (g1*t^7.252)/(g2*g3^3) + (g1*g2*t^7.252)/g3^3 + (3*t^7.252)/(g1*g3) + (2*t^7.252)/(g1*g2^2*g3) + (2*g2^2*t^7.252)/(g1*g3) + (g3*t^7.252)/(g1^3*g2) + (g2*g3*t^7.252)/g1^3 + (2*g3^3*t^7.252)/g1^5 + (g3^3*t^7.252)/(g1^5*g2^2) + (g2^2*g3^3*t^7.252)/g1^5 + t^7.512/(g1^12*g2^3) + t^7.512/(g1^12*g2) + (g2*t^7.512)/g1^12 + (g2^3*t^7.512)/g1^12 + t^7.512/(g2^3*g3^12) + t^7.512/(g2*g3^12) + (g2*t^7.512)/g3^12 + (g2^3*t^7.512)/g3^12 + t^7.512/(g1^2*g3^10) + t^7.512/(g1^2*g2^2*g3^10) + (g2^2*t^7.512)/(g1^2*g3^10) + t^7.512/(g1^4*g2^3*g3^8) + (3*t^7.512)/(g1^4*g2*g3^8) + (3*g2*t^7.512)/(g1^4*g3^8) + (g2^3*t^7.512)/(g1^4*g3^8) + (4*t^7.512)/(g1^6*g3^6) + t^7.512/(g1^6*g2^2*g3^6) + (g2^2*t^7.512)/(g1^6*g3^6) + t^7.512/(g1^8*g2^3*g3^4) + (3*t^7.512)/(g1^8*g2*g3^4) + (3*g2*t^7.512)/(g1^8*g3^4) + (g2^3*t^7.512)/(g1^8*g3^4) + t^7.512/(g1^10*g3^2) + t^7.512/(g1^10*g2^2*g3^2) + (g2^2*t^7.512)/(g1^10*g3^2) + (g1^7*t^7.748)/(g2*g3^5) + (g1^7*g2*t^7.748)/g3^5 + (g1^5*t^7.748)/g3^3 + (g1^3*t^7.748)/(g2*g3) + (g1^3*g2*t^7.748)/g3 - (g1*g3*t^7.748)/g2^2 - g1*g2^2*g3*t^7.748 + (g3^3*t^7.748)/(g1*g2) + (g2*g3^3*t^7.748)/g1 + (g3^5*t^7.748)/g1^3 + (g3^7*t^7.748)/(g1^5*g2) + (g2*g3^7*t^7.748)/g1^5 - t^8.008/g1^8 - t^8.008/g3^8 - (3*t^8.008)/(g1^4*g3^4) - (2*t^8.008)/(g1^4*g2^2*g3^4) - (2*g2^2*t^8.008)/(g1^4*g3^4) + t^8.033/(g1^16*g3^16) - (g1^5*g3*t^8.244)/g2 - g1^5*g2*g3*t^8.244 - 2*g1^3*g3^3*t^8.244 - (g1^3*g3^3*t^8.244)/g2^2 - g1^3*g2^2*g3^3*t^8.244 - (g1*g3^5*t^8.244)/g2 - g1*g2*g3^5*t^8.244 + t^8.269/(g1^9*g3^9) + t^8.269/(g1^9*g2^2*g3^9) + (g2^2*t^8.269)/(g1^9*g3^9) - t^8.504/(g1^4*g2^3) - (6*t^8.504)/(g1^4*g2) - (6*g2*t^8.504)/g1^4 - (g2^3*t^8.504)/g1^4 - (g1^4*t^8.504)/(g2*g3^8) - (g1^4*g2*t^8.504)/g3^8 - (g1^2*t^8.504)/g3^6 - t^8.504/(g2^3*g3^4) - (6*t^8.504)/(g2*g3^4) - (6*g2*t^8.504)/g3^4 - (g2^3*t^8.504)/g3^4 - (2*t^8.504)/(g1^2*g3^2) + t^8.504/(g1^2*g2^4*g3^2) + (g2^4*t^8.504)/(g1^2*g3^2) - (g3^2*t^8.504)/g1^6 - (g3^4*t^8.504)/(g1^8*g2) - (g2*g3^4*t^8.504)/g1^8 + t^8.529/(g1^12*g2*g3^16) + (g2*t^8.529)/(g1^12*g3^16) + t^8.529/(g1^14*g3^14) + t^8.529/(g1^16*g2*g3^12) + (g2*t^8.529)/(g1^16*g3^12) - g1^9*g3*t^8.74 - (g1^7*g3^3*t^8.74)/g2 - g1^7*g2*g3^3*t^8.74 - g1^5*g3^5*t^8.74 - (g1^3*g3^7*t^8.74)/g2 - g1^3*g2*g3^7*t^8.74 - g1*g3^9*t^8.74 + t^8.765/(g1^5*g2^3*g3^9) + (2*t^8.765)/(g1^5*g2*g3^9) + (2*g2*t^8.765)/(g1^5*g3^9) + (g2^3*t^8.765)/(g1^5*g3^9) + t^8.765/(g1^7*g3^7) + t^8.765/(g1^7*g2^2*g3^7) + (g2^2*t^8.765)/(g1^7*g3^7) + t^8.765/(g1^9*g2^3*g3^5) + (2*t^8.765)/(g1^9*g2*g3^5) + (2*g2*t^8.765)/(g1^9*g3^5) + (g2^3*t^8.765)/(g1^9*g3^5) - t^4.252/(g1*g3*y) - t^6.26/(g1^5*g3^5*y) - t^6.756/(g1*g2*g3^5*y) - (g2*t^6.756)/(g1*g3^5*y) - t^6.756/(g1^3*g3^3*y) - t^6.756/(g1^5*g2*g3*y) - (g2*t^6.756)/(g1^5*g3*y) + t^7.512/(g1^4*g2*g3^8*y) + (g2*t^7.512)/(g1^4*g3^8*y) + t^7.512/(g1^6*g3^6*y) + t^7.512/(g1^8*g2*g3^4*y) + (g2*t^7.512)/(g1^8*g3^4*y) + (g1^3*t^7.748)/(g2*g3*y) + (g1^3*g2*t^7.748)/(g3*y) + (g1*g3*t^7.748)/y + (g3^3*t^7.748)/(g1*g2*y) + (g2*g3^3*t^7.748)/(g1*y) + t^8.008/(g1^8*y) + t^8.008/(g3^8*y) + t^8.008/(g1^2*g2*g3^6*y) + (g2*t^8.008)/(g1^2*g3^6*y) + (3*t^8.008)/(g1^4*g3^4*y) + t^8.008/(g1^4*g2^2*g3^4*y) + (g2^2*t^8.008)/(g1^4*g3^4*y) + t^8.008/(g1^6*g2*g3^2*y) + (g2*t^8.008)/(g1^6*g3^2*y) + (g1^3*g3^3*t^8.244)/y - t^8.269/(g1^9*g3^9*y) + t^8.504/(g1^4*g2*y) + (g2*t^8.504)/(g1^4*y) + t^8.504/(g2*g3^4*y) + (g2*t^8.504)/(g3^4*y) + t^8.504/(g1^2*g3^2*y) - t^8.765/(g1^5*g2*g3^9*y) - (g2*t^8.765)/(g1^5*g3^9*y) - t^8.765/(g1^7*g3^7*y) - t^8.765/(g1^9*g2*g3^5*y) - (g2*t^8.765)/(g1^9*g3^5*y) - (t^4.252*y)/(g1*g3) - (t^6.26*y)/(g1^5*g3^5) - (t^6.756*y)/(g1*g2*g3^5) - (g2*t^6.756*y)/(g1*g3^5) - (t^6.756*y)/(g1^3*g3^3) - (t^6.756*y)/(g1^5*g2*g3) - (g2*t^6.756*y)/(g1^5*g3) + (t^7.512*y)/(g1^4*g2*g3^8) + (g2*t^7.512*y)/(g1^4*g3^8) + (t^7.512*y)/(g1^6*g3^6) + (t^7.512*y)/(g1^8*g2*g3^4) + (g2*t^7.512*y)/(g1^8*g3^4) + (g1^3*t^7.748*y)/(g2*g3) + (g1^3*g2*t^7.748*y)/g3 + g1*g3*t^7.748*y + (g3^3*t^7.748*y)/(g1*g2) + (g2*g3^3*t^7.748*y)/g1 + (t^8.008*y)/g1^8 + (t^8.008*y)/g3^8 + (t^8.008*y)/(g1^2*g2*g3^6) + (g2*t^8.008*y)/(g1^2*g3^6) + (3*t^8.008*y)/(g1^4*g3^4) + (t^8.008*y)/(g1^4*g2^2*g3^4) + (g2^2*t^8.008*y)/(g1^4*g3^4) + (t^8.008*y)/(g1^6*g2*g3^2) + (g2*t^8.008*y)/(g1^6*g3^2) + g1^3*g3^3*t^8.244*y - (t^8.269*y)/(g1^9*g3^9) + (t^8.504*y)/(g1^4*g2) + (g2*t^8.504*y)/g1^4 + (t^8.504*y)/(g2*g3^4) + (g2*t^8.504*y)/g3^4 + (t^8.504*y)/(g1^2*g3^2) - (t^8.765*y)/(g1^5*g2*g3^9) - (g2*t^8.765*y)/(g1^5*g3^9) - (t^8.765*y)/(g1^7*g3^7) - (t^8.765*y)/(g1^9*g2*g3^5) - (g2*t^8.765*y)/(g1^9*g3^5) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
936 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{6}$ | 0.7097 | 0.8751 | 0.811 | [M:[0.9631, 0.953, 1.0839, 0.8322, 1.0, 0.9161], q:[0.4765, 0.5604], qb:[0.4396, 0.6074], phi:[0.479]] | t^2.497 + t^2.748 + t^2.859 + t^2.874 + t^2.889 + t^3. + t^3.252 + t^4.075 + t^4.185 + t^4.296 + t^4.437 + t^4.548 + t^4.578 + t^4.689 + t^4.799 + t^4.94 + t^4.993 + t^5.081 + t^5.245 + t^5.356 + t^5.371 + t^5.386 + t^5.497 + t^5.623 + t^5.718 + t^5.733 + 3*t^5.748 + t^5.764 + t^5.779 + t^5.874 - 2*t^6. - t^4.437/y - t^4.437*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
369 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ | 0.7466 | 0.9183 | 0.813 | [M:[0.8355, 0.8355, 0.8355, 0.8355, 1.0], q:[0.6645, 0.5], qb:[0.5, 0.6645], phi:[0.4177]] | 5*t^2.506 + t^3. + t^3.987 + 3*t^4.253 + 4*t^4.747 + 15*t^5.013 + 3*t^5.24 + t^5.506 - 7*t^6. - t^4.253/y - t^4.253*y | detail |