Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46434 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3^2$ | 0.7674 | 0.9598 | 0.7995 | [X:[], M:[0.6694, 0.8347, 1.0, 0.8347, 0.8347, 0.8347], q:[0.6653, 0.6653], qb:[0.5, 0.5], phi:[0.4174]] | [X:[], M:[[-4, -4, 0], [-4, 0, 1], [0, 0, 0], [0, -4, -1], [-4, 0, -1], [0, -4, 1]], q:[[4, 0, 0], [0, 4, 0]], qb:[[0, 0, -1], [0, 0, 1]], phi:[[-1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ \phi_1^2$, $ M_5$, $ M_4$, $ M_2$, $ M_6$, $ M_3$, $ M_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_1\phi_1^2$, $ M_1M_4$, $ M_1M_5$, $ M_1M_6$, $ M_1M_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_5$, $ M_4M_6$, $ M_1M_3$, $ M_2M_4$, $ M_5M_6$, $ \phi_1^4$, $ M_5^2$, $ M_4^2$, $ M_4M_5$, $ M_4\phi_1^2$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ M_2\phi_1^2$, $ M_2^2$, $ M_6^2$, $ M_2M_6$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ M_3\phi_1^2$ | . | -7 | t^2.01 + 5*t^2.5 + t^3. + t^4.02 + 3*t^4.25 + 5*t^4.51 + 4*t^4.75 + 16*t^5.01 + 3*t^5.24 + t^5.5 - 7*t^6. + t^6.02 + 3*t^6.26 - 4*t^6.5 + 5*t^6.52 + 15*t^6.76 - t^6.99 + 16*t^7.02 + 19*t^7.25 + 36*t^7.51 + 8*t^7.75 - 9*t^8.01 + t^8.03 - 8*t^8.24 + 3*t^8.27 - 34*t^8.5 + 5*t^8.53 - 7*t^8.74 + 15*t^8.76 - t^4.25/y - t^6.26/y - (5*t^6.76)/y + (5*t^7.51)/y + (5*t^7.75)/y + (11*t^8.01)/y + t^8.24/y - t^8.27/y + (5*t^8.5)/y - (5*t^8.76)/y - t^4.25*y - t^6.26*y - 5*t^6.76*y + 5*t^7.51*y + 5*t^7.75*y + 11*t^8.01*y + t^8.24*y - t^8.27*y + 5*t^8.5*y - 5*t^8.76*y | t^2.01/(g1^4*g2^4) + t^2.5/(g1^2*g2^2) + t^2.5/(g1^4*g3) + t^2.5/(g2^4*g3) + (g3*t^2.5)/g1^4 + (g3*t^2.5)/g2^4 + t^3. + t^4.02/(g1^8*g2^8) + t^4.25/(g1*g2) + t^4.25/(g1*g2*g3^2) + (g3^2*t^4.25)/(g1*g2) + t^4.51/(g1^6*g2^6) + t^4.51/(g1^4*g2^8*g3) + t^4.51/(g1^8*g2^4*g3) + (g3*t^4.51)/(g1^4*g2^8) + (g3*t^4.51)/(g1^8*g2^4) + (g1^3*t^4.75)/(g2*g3) + (g2^3*t^4.75)/(g1*g3) + (g1^3*g3*t^4.75)/g2 + (g2^3*g3*t^4.75)/g1 + t^5.01/g1^8 + t^5.01/g2^8 + (4*t^5.01)/(g1^4*g2^4) + t^5.01/(g1^8*g3^2) + t^5.01/(g2^8*g3^2) + t^5.01/(g1^4*g2^4*g3^2) + t^5.01/(g1^2*g2^6*g3) + t^5.01/(g1^6*g2^2*g3) + (g3*t^5.01)/(g1^2*g2^6) + (g3*t^5.01)/(g1^6*g2^2) + (g3^2*t^5.01)/g1^8 + (g3^2*t^5.01)/g2^8 + (g3^2*t^5.01)/(g1^4*g2^4) + (g1^7*t^5.24)/g2 + g1^3*g2^3*t^5.24 + (g2^7*t^5.24)/g1 + t^5.5/(g1^2*g2^2) - 3*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - t^6./g3^2 - g3^2*t^6. + t^6.02/(g1^12*g2^12) + t^6.26/(g1^5*g2^5) + t^6.26/(g1^5*g2^5*g3^2) + (g3^2*t^6.26)/(g1^5*g2^5) - (g1^4*t^6.5)/g3 - (g2^4*t^6.5)/g3 - g1^4*g3*t^6.5 - g2^4*g3*t^6.5 + t^6.52/(g1^10*g2^10) + t^6.52/(g1^8*g2^12*g3) + t^6.52/(g1^12*g2^8*g3) + (g3*t^6.52)/(g1^8*g2^12) + (g3*t^6.52)/(g1^12*g2^8) + t^6.76/(g1^3*g2^3) + t^6.76/(g1*g2^5*g3^3) + t^6.76/(g1^5*g2*g3^3) + t^6.76/(g1^3*g2^3*g3^2) + (2*t^6.76)/(g1*g2^5*g3) + (2*t^6.76)/(g1^5*g2*g3) + (2*g3*t^6.76)/(g1*g2^5) + (2*g3*t^6.76)/(g1^5*g2) + (g3^2*t^6.76)/(g1^3*g2^3) + (g3^3*t^6.76)/(g1*g2^5) + (g3^3*t^6.76)/(g1^5*g2) - g1^4*g2^4*t^6.99 + t^7.02/(g1^4*g2^12) + (4*t^7.02)/(g1^8*g2^8) + t^7.02/(g1^12*g2^4) + t^7.02/(g1^4*g2^12*g3^2) + t^7.02/(g1^8*g2^8*g3^2) + t^7.02/(g1^12*g2^4*g3^2) + t^7.02/(g1^6*g2^10*g3) + t^7.02/(g1^10*g2^6*g3) + (g3*t^7.02)/(g1^6*g2^10) + (g3*t^7.02)/(g1^10*g2^6) + (g3^2*t^7.02)/(g1^4*g2^12) + (g3^2*t^7.02)/(g1^8*g2^8) + (g3^2*t^7.02)/(g1^12*g2^4) + (2*g1^3*t^7.25)/g2^5 + (3*t^7.25)/(g1*g2) + (2*g2^3*t^7.25)/g1^5 + (g1^3*t^7.25)/(g2^5*g3^2) + (2*t^7.25)/(g1*g2*g3^2) + (g2^3*t^7.25)/(g1^5*g3^2) + (g1*t^7.25)/(g2^3*g3) + (g2*t^7.25)/(g1^3*g3) + (g1*g3*t^7.25)/g2^3 + (g2*g3*t^7.25)/g1^3 + (g1^3*g3^2*t^7.25)/g2^5 + (2*g3^2*t^7.25)/(g1*g2) + (g2^3*g3^2*t^7.25)/g1^5 + t^7.51/(g1^2*g2^10) + (4*t^7.51)/(g1^6*g2^6) + t^7.51/(g1^10*g2^2) + t^7.51/(g1^12*g3^3) + t^7.51/(g2^12*g3^3) + t^7.51/(g1^4*g2^8*g3^3) + t^7.51/(g1^8*g2^4*g3^3) + t^7.51/(g1^2*g2^10*g3^2) + t^7.51/(g1^6*g2^6*g3^2) + t^7.51/(g1^10*g2^2*g3^2) + t^7.51/(g1^12*g3) + t^7.51/(g2^12*g3) + (3*t^7.51)/(g1^4*g2^8*g3) + (3*t^7.51)/(g1^8*g2^4*g3) + (g3*t^7.51)/g1^12 + (g3*t^7.51)/g2^12 + (3*g3*t^7.51)/(g1^4*g2^8) + (3*g3*t^7.51)/(g1^8*g2^4) + (g3^2*t^7.51)/(g1^2*g2^10) + (g3^2*t^7.51)/(g1^6*g2^6) + (g3^2*t^7.51)/(g1^10*g2^2) + (g3^3*t^7.51)/g1^12 + (g3^3*t^7.51)/g2^12 + (g3^3*t^7.51)/(g1^4*g2^8) + (g3^3*t^7.51)/(g1^8*g2^4) + (g1^5*t^7.75)/g2^3 + (g2^5*t^7.75)/g1^3 - (g1*g2*t^7.75)/g3^2 + (g1^7*t^7.75)/(g2^5*g3) + (g1^3*t^7.75)/(g2*g3) + (g2^3*t^7.75)/(g1*g3) + (g2^7*t^7.75)/(g1^5*g3) + (g1^7*g3*t^7.75)/g2^5 + (g1^3*g3*t^7.75)/g2 + (g2^3*g3*t^7.75)/g1 + (g2^7*g3*t^7.75)/g1^5 - g1*g2*g3^2*t^7.75 - t^8.01/g1^8 - t^8.01/g2^8 - (3*t^8.01)/(g1^4*g2^4) - (2*t^8.01)/(g1^4*g2^4*g3^2) - (2*g3^2*t^8.01)/(g1^4*g2^4) + t^8.03/(g1^16*g2^16) - 2*g1^3*g2^3*t^8.24 - (g1^3*g2^3*t^8.24)/g3^2 - (g1^5*g2*t^8.24)/g3 - (g1*g2^5*t^8.24)/g3 - g1^5*g2*g3*t^8.24 - g1*g2^5*g3*t^8.24 - g1^3*g2^3*g3^2*t^8.24 + t^8.27/(g1^9*g2^9) + t^8.27/(g1^9*g2^9*g3^2) + (g3^2*t^8.27)/(g1^9*g2^9) - (g1^2*t^8.5)/g2^6 - (2*t^8.5)/(g1^2*g2^2) - (g2^2*t^8.5)/g1^6 + t^8.5/(g1^2*g2^2*g3^4) - t^8.5/(g1^4*g3^3) - t^8.5/(g2^4*g3^3) - (6*t^8.5)/(g1^4*g3) - (g1^4*t^8.5)/(g2^8*g3) - (6*t^8.5)/(g2^4*g3) - (g2^4*t^8.5)/(g1^8*g3) - (6*g3*t^8.5)/g1^4 - (g1^4*g3*t^8.5)/g2^8 - (6*g3*t^8.5)/g2^4 - (g2^4*g3*t^8.5)/g1^8 - (g3^3*t^8.5)/g1^4 - (g3^3*t^8.5)/g2^4 + (g3^4*t^8.5)/(g1^2*g2^2) + t^8.53/(g1^14*g2^14) + t^8.53/(g1^12*g2^16*g3) + t^8.53/(g1^16*g2^12*g3) + (g3*t^8.53)/(g1^12*g2^16) + (g3*t^8.53)/(g1^16*g2^12) - g1^9*g2*t^8.74 - g1^5*g2^5*t^8.74 - g1*g2^9*t^8.74 - (g1^7*g2^3*t^8.74)/g3 - (g1^3*g2^7*t^8.74)/g3 - g1^7*g2^3*g3*t^8.74 - g1^3*g2^7*g3*t^8.74 + t^8.76/(g1^7*g2^7) + t^8.76/(g1^5*g2^9*g3^3) + t^8.76/(g1^9*g2^5*g3^3) + t^8.76/(g1^7*g2^7*g3^2) + (2*t^8.76)/(g1^5*g2^9*g3) + (2*t^8.76)/(g1^9*g2^5*g3) + (2*g3*t^8.76)/(g1^5*g2^9) + (2*g3*t^8.76)/(g1^9*g2^5) + (g3^2*t^8.76)/(g1^7*g2^7) + (g3^3*t^8.76)/(g1^5*g2^9) + (g3^3*t^8.76)/(g1^9*g2^5) - t^4.25/(g1*g2*y) - t^6.26/(g1^5*g2^5*y) - t^6.76/(g1^3*g2^3*y) - t^6.76/(g1*g2^5*g3*y) - t^6.76/(g1^5*g2*g3*y) - (g3*t^6.76)/(g1*g2^5*y) - (g3*t^6.76)/(g1^5*g2*y) + t^7.51/(g1^6*g2^6*y) + t^7.51/(g1^4*g2^8*g3*y) + t^7.51/(g1^8*g2^4*g3*y) + (g3*t^7.51)/(g1^4*g2^8*y) + (g3*t^7.51)/(g1^8*g2^4*y) + (g1*g2*t^7.75)/y + (g1^3*t^7.75)/(g2*g3*y) + (g2^3*t^7.75)/(g1*g3*y) + (g1^3*g3*t^7.75)/(g2*y) + (g2^3*g3*t^7.75)/(g1*y) + t^8.01/(g1^8*y) + t^8.01/(g2^8*y) + (3*t^8.01)/(g1^4*g2^4*y) + t^8.01/(g1^4*g2^4*g3^2*y) + t^8.01/(g1^2*g2^6*g3*y) + t^8.01/(g1^6*g2^2*g3*y) + (g3*t^8.01)/(g1^2*g2^6*y) + (g3*t^8.01)/(g1^6*g2^2*y) + (g3^2*t^8.01)/(g1^4*g2^4*y) + (g1^3*g2^3*t^8.24)/y - t^8.27/(g1^9*g2^9*y) + t^8.5/(g1^2*g2^2*y) + t^8.5/(g1^4*g3*y) + t^8.5/(g2^4*g3*y) + (g3*t^8.5)/(g1^4*y) + (g3*t^8.5)/(g2^4*y) - t^8.76/(g1^7*g2^7*y) - t^8.76/(g1^5*g2^9*g3*y) - t^8.76/(g1^9*g2^5*g3*y) - (g3*t^8.76)/(g1^5*g2^9*y) - (g3*t^8.76)/(g1^9*g2^5*y) - (t^4.25*y)/(g1*g2) - (t^6.26*y)/(g1^5*g2^5) - (t^6.76*y)/(g1^3*g2^3) - (t^6.76*y)/(g1*g2^5*g3) - (t^6.76*y)/(g1^5*g2*g3) - (g3*t^6.76*y)/(g1*g2^5) - (g3*t^6.76*y)/(g1^5*g2) + (t^7.51*y)/(g1^6*g2^6) + (t^7.51*y)/(g1^4*g2^8*g3) + (t^7.51*y)/(g1^8*g2^4*g3) + (g3*t^7.51*y)/(g1^4*g2^8) + (g3*t^7.51*y)/(g1^8*g2^4) + g1*g2*t^7.75*y + (g1^3*t^7.75*y)/(g2*g3) + (g2^3*t^7.75*y)/(g1*g3) + (g1^3*g3*t^7.75*y)/g2 + (g2^3*g3*t^7.75*y)/g1 + (t^8.01*y)/g1^8 + (t^8.01*y)/g2^8 + (3*t^8.01*y)/(g1^4*g2^4) + (t^8.01*y)/(g1^4*g2^4*g3^2) + (t^8.01*y)/(g1^2*g2^6*g3) + (t^8.01*y)/(g1^6*g2^2*g3) + (g3*t^8.01*y)/(g1^2*g2^6) + (g3*t^8.01*y)/(g1^6*g2^2) + (g3^2*t^8.01*y)/(g1^4*g2^4) + g1^3*g2^3*t^8.24*y - (t^8.27*y)/(g1^9*g2^9) + (t^8.5*y)/(g1^2*g2^2) + (t^8.5*y)/(g1^4*g3) + (t^8.5*y)/(g2^4*g3) + (g3*t^8.5*y)/g1^4 + (g3*t^8.5*y)/g2^4 - (t^8.76*y)/(g1^7*g2^7) - (t^8.76*y)/(g1^5*g2^9*g3) - (t^8.76*y)/(g1^9*g2^5*g3) - (g3*t^8.76*y)/(g1^5*g2^9) - (g3*t^8.76*y)/(g1^9*g2^5) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
46886 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3^2$ + $ M_1M_2$ | 0.7097 | 0.8751 | 0.811 | [X:[], M:[0.9161, 1.0839, 1.0, 0.8322, 0.9631, 0.953], q:[0.4765, 0.6074], qb:[0.4396, 0.5604], phi:[0.479]] | t^2.5 + t^2.75 + t^2.86 + t^2.87 + t^2.89 + t^3. + t^3.25 + t^4.07 + t^4.19 + t^4.3 + t^4.44 + t^4.55 + t^4.58 + t^4.69 + t^4.8 + t^4.94 + t^4.99 + t^5.08 + t^5.25 + t^5.36 + t^5.37 + t^5.39 + t^5.5 + t^5.62 + t^5.72 + t^5.73 + 3*t^5.75 + t^5.76 + t^5.78 + t^5.87 - 2*t^6. - t^4.44/y - t^4.44*y | detail | |
47060 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3^2$ + $ M_2\phi_1^2$ | 0.7231 | 0.895 | 0.8079 | [X:[], M:[0.8566, 1.0717, 1.0, 0.7848, 0.9379, 0.9187], q:[0.4952, 0.6482], qb:[0.4331, 0.5669], phi:[0.4641]] | t^2.35 + t^2.57 + t^2.76 + t^2.78 + t^2.81 + t^3. + t^3.22 + t^3.99 + t^4.18 + t^4.36 + t^4.39 + t^4.58 + t^4.64 + t^4.71 + t^4.79 + t^4.82 + t^4.92 + t^5.04 + t^5.11 + 2*t^5.14 + t^5.17 + t^5.28 + t^5.33 + t^5.35 + t^5.38 + t^5.51 + 4*t^5.57 + t^5.63 + t^5.78 + t^5.97 - 2*t^6. - t^4.39/y - t^4.39*y | detail | |
46809 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3^2$ + $ M_4M_6$ | 0.7378 | 0.9171 | 0.8045 | [X:[], M:[0.7895, 0.7895, 1.0, 1.0, 0.7895, 1.0], q:[0.7105, 0.5], qb:[0.5, 0.5], phi:[0.4474]] | 3*t^2.37 + t^2.68 + 3*t^3. + 6*t^4.34 + 6*t^4.74 + 3*t^4.97 + 3*t^5.05 + 7*t^5.37 + t^5.61 + 3*t^5.68 - 4*t^6. - t^4.34/y - t^4.34*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46133 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ | 0.8092 | 1.0197 | 0.7935 | [X:[], M:[0.7518, 0.7518, 0.7518, 0.7518, 0.7518, 0.7518], q:[0.6241, 0.6241], qb:[0.6241, 0.6241], phi:[0.3759]] | 7*t^2.26 + 28*t^4.51 + 10*t^4.87 - 16*t^6. - t^4.13/y - t^4.13*y | detail |