Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59036 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{6}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.4141 1.6255 0.87 [X:[1.3333], M:[0.8091, 0.8091], q:[0.3469, 0.6803], qb:[0.5106, 0.4622], phi:[0.3333]] [X:[[0, 0]], M:[[-1, 1], [-1, 1]], q:[[-1, -1], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ ${}\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ -2 3*t^2.43 + t^2.57 + t^3. + 2*t^3.43 + t^4. + 2*t^4.43 + 2*t^4.57 + 6*t^4.85 + 2*t^5. + t^5.12 + t^5.15 + t^5.3 + 4*t^5.43 + t^5.45 + 2*t^5.57 + 5*t^5.85 - 2*t^6. + 3*t^6.12 - t^6.15 + t^6.3 + 5*t^6.43 + t^6.45 + t^6.57 + 8*t^6.85 - t^6.88 + 4*t^7. + 2*t^7.12 + t^7.15 + t^7.16 + 10*t^7.28 + t^7.3 + 6*t^7.43 + t^7.45 + t^7.55 + 3*t^7.57 + t^7.6 - t^7.7 + t^7.72 + 2*t^7.73 + 12*t^7.85 + t^7.88 + 7*t^8. + 2*t^8.12 + t^8.15 + 9*t^8.28 + t^8.3 - 7*t^8.43 + t^8.45 + 8*t^8.55 - 3*t^8.57 - t^8.72 + 3*t^8.73 + 16*t^8.85 + t^8.88 - t^4./y - t^5./y - (3*t^6.43)/y - t^6.57/y - t^7./y - (4*t^7.43)/y + (3*t^7.85)/y + (2*t^8.)/y + t^8.43/y + t^8.57/y - t^4.*y - t^5.*y - 3*t^6.43*y - t^6.57*y - t^7.*y - 4*t^7.43*y + 3*t^7.85*y + 2*t^8.*y + t^8.43*y + t^8.57*y (3*g2*t^2.43)/g1 + (g1*t^2.57)/g2 + t^3. + (2*g2*t^3.43)/g1 + t^4. + (2*g2*t^4.43)/g1 + (2*g1*t^4.57)/g2 + (6*g2^2*t^4.85)/g1^2 + 2*t^5. + t^5.12/(g1^3*g2^3) + (g1^2*t^5.15)/g2^2 + g1^2*g2^4*t^5.3 + (4*g2*t^5.43)/g1 + g1^4*g2^2*t^5.45 + (2*g1*t^5.57)/g2 + (5*g2^2*t^5.85)/g1^2 - 2*t^6. + (3*t^6.12)/(g1^3*g2^3) - (g1^2*t^6.15)/g2^2 + g1^2*g2^4*t^6.3 + (5*g2*t^6.43)/g1 + g1^4*g2^2*t^6.45 + (g1*t^6.57)/g2 + (8*g2^2*t^6.85)/g1^2 - g1^3*g2^3*t^6.88 + 4*t^7. + (2*t^7.12)/(g1^3*g2^3) + (g1^2*t^7.15)/g2^2 + g2^6*t^7.16 + (10*g2^3*t^7.28)/g1^3 + g1^2*g2^4*t^7.3 + (6*g2*t^7.43)/g1 + g1^4*g2^2*t^7.45 + t^7.55/(g1^4*g2^2) + (3*g1*t^7.57)/g2 + g1^6*t^7.6 - t^7.7/(g1^2*g2^4) + (g1^3*t^7.72)/g2^3 + 2*g1*g2^5*t^7.73 + (12*g2^2*t^7.85)/g1^2 + g1^3*g2^3*t^7.88 + 7*t^8. + (2*t^8.12)/(g1^3*g2^3) + (g1^2*t^8.15)/g2^2 + (9*g2^3*t^8.28)/g1^3 + g1^2*g2^4*t^8.3 - (7*g2*t^8.43)/g1 + g1^4*g2^2*t^8.45 + (8*t^8.55)/(g1^4*g2^2) - (3*g1*t^8.57)/g2 - (g1^3*t^8.72)/g2^3 + 3*g1*g2^5*t^8.73 + (16*g2^2*t^8.85)/g1^2 + g1^3*g2^3*t^8.88 - t^4./y - t^5./y - (3*g2*t^6.43)/(g1*y) - (g1*t^6.57)/(g2*y) - t^7./y - (4*g2*t^7.43)/(g1*y) + (3*g2^2*t^7.85)/(g1^2*y) + (2*t^8.)/y + (g2*t^8.43)/(g1*y) + (g1*t^8.57)/(g2*y) - t^4.*y - t^5.*y - (3*g2*t^6.43*y)/g1 - (g1*t^6.57*y)/g2 - t^7.*y - (4*g2*t^7.43*y)/g1 + (3*g2^2*t^7.85*y)/g1^2 + 2*t^8.*y + (g2*t^8.43*y)/g1 + (g1*t^8.57*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57495 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{6}$ 1.3986 1.5973 0.8756 [X:[1.3333], M:[0.8205], q:[0.3471, 0.6805], qb:[0.499, 0.4734], phi:[0.3333]] 2*t^2.46 + t^2.54 + t^3. + 2*t^3.46 + t^3.54 + t^4. + 2*t^4.46 + 2*t^4.54 + 3*t^4.92 + t^5. + t^5.08 + t^5.12 + t^5.34 + t^5.41 + 3*t^5.46 + 2*t^5.54 + 3*t^5.92 - t^4./y - t^5./y - t^4.*y - t^5.*y detail