Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57495 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{6}$ | 1.3986 | 1.5973 | 0.8756 | [X:[1.3333], M:[0.8205], q:[0.3471, 0.6805], qb:[0.499, 0.4734], phi:[0.3333]] | [X:[[0, 0]], M:[[-1, 1]], q:[[-1, -1], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ | ${}\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ 2}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ | 0 | 2*t^2.46 + t^2.54 + t^3. + 2*t^3.46 + t^3.54 + t^4. + 2*t^4.46 + 2*t^4.54 + 3*t^4.92 + t^5. + t^5.08 + t^5.12 + t^5.34 + t^5.41 + 3*t^5.46 + 2*t^5.54 + 3*t^5.92 + 3*t^6.12 + t^6.34 + t^6.41 + 4*t^6.46 + 2*t^6.54 - t^6.88 + 6*t^6.92 + 4*t^7. + 2*t^7.08 + 2*t^7.12 + t^7.26 + t^7.34 + 4*t^7.38 + t^7.41 + 4*t^7.46 + t^7.49 + 3*t^7.54 + t^7.62 - t^7.66 + t^7.8 + 8*t^7.92 + 7*t^8. + 3*t^8.08 + 2*t^8.12 + t^8.34 + 4*t^8.38 + t^8.41 - 2*t^8.46 - t^8.54 + 5*t^8.59 + t^8.66 + 2*t^8.8 + t^8.88 + 11*t^8.92 - t^4./y - t^5./y - (2*t^6.46)/y - t^6.54/y - t^7./y - (3*t^7.46)/y - t^7.54/y + t^7.92/y + t^8./y + t^8.92/y - t^4.*y - t^5.*y - 2*t^6.46*y - t^6.54*y - t^7.*y - 3*t^7.46*y - t^7.54*y + t^7.92*y + t^8.*y + t^8.92*y | (2*g2*t^2.46)/g1 + (g1*t^2.54)/g2 + t^3. + (2*g2*t^3.46)/g1 + (g1*t^3.54)/g2 + t^4. + (2*g2*t^4.46)/g1 + (2*g1*t^4.54)/g2 + (3*g2^2*t^4.92)/g1^2 + t^5. + (g1^2*t^5.08)/g2^2 + t^5.12/(g1^3*g2^3) + g1^2*g2^4*t^5.34 + g1^4*g2^2*t^5.41 + (3*g2*t^5.46)/g1 + (2*g1*t^5.54)/g2 + (3*g2^2*t^5.92)/g1^2 + (3*t^6.12)/(g1^3*g2^3) + g1^2*g2^4*t^6.34 + g1^4*g2^2*t^6.41 + (4*g2*t^6.46)/g1 + (2*g1*t^6.54)/g2 - g1^3*g2^3*t^6.88 + (6*g2^2*t^6.92)/g1^2 + 4*t^7. + (2*g1^2*t^7.08)/g2^2 + (2*t^7.12)/(g1^3*g2^3) + g2^6*t^7.26 + g1^2*g2^4*t^7.34 + (4*g2^3*t^7.38)/g1^3 + g1^4*g2^2*t^7.41 + (4*g2*t^7.46)/g1 + g1^6*t^7.49 + (3*g1*t^7.54)/g2 + (g1^3*t^7.62)/g2^3 - t^7.66/(g1^2*g2^4) + g1*g2^5*t^7.8 + (8*g2^2*t^7.92)/g1^2 + 7*t^8. + (3*g1^2*t^8.08)/g2^2 + (2*t^8.12)/(g1^3*g2^3) + g1^2*g2^4*t^8.34 + (4*g2^3*t^8.38)/g1^3 + g1^4*g2^2*t^8.41 - (2*g2*t^8.46)/g1 - (g1*t^8.54)/g2 + (5*t^8.59)/(g1^4*g2^2) + t^8.66/(g1^2*g2^4) + 2*g1*g2^5*t^8.8 + g1^3*g2^3*t^8.88 + (11*g2^2*t^8.92)/g1^2 - t^4./y - t^5./y - (2*g2*t^6.46)/(g1*y) - (g1*t^6.54)/(g2*y) - t^7./y - (3*g2*t^7.46)/(g1*y) - (g1*t^7.54)/(g2*y) + (g2^2*t^7.92)/(g1^2*y) + t^8./y + (g2^2*t^8.92)/(g1^2*y) - t^4.*y - t^5.*y - (2*g2*t^6.46*y)/g1 - (g1*t^6.54*y)/g2 - t^7.*y - (3*g2*t^7.46*y)/g1 - (g1*t^7.54*y)/g2 + (g2^2*t^7.92*y)/g1^2 + t^8.*y + (g2^2*t^8.92*y)/g1^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
59036 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{6}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 1.4141 | 1.6255 | 0.87 | [X:[1.3333], M:[0.8091, 0.8091], q:[0.3469, 0.6803], qb:[0.5106, 0.4622], phi:[0.3333]] | 3*t^2.43 + t^2.57 + t^3. + 2*t^3.43 + t^4. + 2*t^4.43 + 2*t^4.57 + 6*t^4.85 + 2*t^5. + t^5.12 + t^5.15 + t^5.3 + 4*t^5.43 + t^5.45 + 2*t^5.57 + 5*t^5.85 - 2*t^6. - t^4./y - t^5./y - t^4.*y - t^5.*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47917 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4047 | 1.592 | 0.8823 | [X:[1.371], M:[0.7758], q:[0.384, 0.6985], qb:[0.5257, 0.5047], phi:[0.3145]] | t^2.327 + t^2.666 + t^2.729 + t^2.83 + 2*t^3.61 + t^3.673 + t^4.113 + 2*t^4.553 + 2*t^4.616 + t^4.655 + t^4.994 + t^5.158 + t^5.333 + t^5.343 + t^5.396 + t^5.458 + 2*t^5.497 + t^5.549 + 2*t^5.56 + t^5.612 + t^5.661 + t^5.937 - 4*t^6. - t^3.943/y - t^4.887/y - t^3.943*y - t^4.887*y | detail |