Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58670 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}^{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{8}\phi_{1}\tilde{q}_{2}^{2}$ | 0.6593 | 0.8825 | 0.7472 | [M:[0.9534, 0.8032, 0.8601, 1.1399, 1.1399, 0.7668, 0.7099, 0.6735], q:[0.7383, 0.3083], qb:[0.4585, 0.4016], phi:[0.5233]] | [M:[[-4], [26], [-12], [12], [12], [-20], [18], [-28]], q:[[-1], [5]], qb:[[-25], [13]], phi:[[2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{8}$, ${ }M_{7}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{6}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{5}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{8}^{2}$, ${ }M_{7}M_{8}$, ${ }M_{8}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }M_{7}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{6}M_{8}$, ${ }M_{8}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{2}M_{8}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{7}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{8}$, ${ }M_{1}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{8}$, ${ }M_{5}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{4}M_{7}$, ${ }M_{5}M_{7}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}q_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{5}$, ${ }M_{2}\phi_{1}q_{2}^{2}$ | ${}$ | -3 | t^2.02 + 2*t^2.13 + 2*t^2.3 + t^2.41 + t^2.86 + t^3.14 + 3*t^3.42 + t^4.041 + 3*t^4.15 + 3*t^4.259 + 3*t^4.321 + 5*t^4.43 + 2*t^4.539 + 3*t^4.601 + 2*t^4.71 + t^4.819 + t^4.881 + 2*t^4.99 + 3*t^5.16 + 3*t^5.27 + 5*t^5.44 + 6*t^5.55 + 5*t^5.72 + 2*t^5.829 - 3*t^6. + t^6.061 + 2*t^6.171 + 5*t^6.28 + 3*t^6.341 + 4*t^6.389 + 7*t^6.45 + 10*t^6.56 + 5*t^6.621 + 3*t^6.669 + 7*t^6.73 + 8*t^6.84 + 5*t^6.901 + 2*t^6.949 + 3*t^7.01 + 3*t^7.119 + 3*t^7.181 + t^7.229 + 4*t^7.29 + 3*t^7.399 + 8*t^7.461 + 10*t^7.57 + 10*t^7.679 + 8*t^7.741 + 9*t^7.85 + 4*t^7.959 + t^8.02 + t^8.082 - 3*t^8.13 + 2*t^8.191 + 2*t^8.239 - 3*t^8.3 + 3*t^8.362 + 3*t^8.41 + 6*t^8.471 + 5*t^8.519 + 11*t^8.58 + 6*t^8.642 + 13*t^8.689 + 10*t^8.751 + 4*t^8.799 + 13*t^8.86 + 8*t^8.921 + 13*t^8.969 - t^4.57/y - t^6.59/y - t^6.7/y - t^6.87/y - t^6.98/y + (3*t^7.15)/y + t^7.259/y + (2*t^7.321)/y + (5*t^7.43)/y + (2*t^7.539)/y + t^7.601/y + (2*t^7.71)/y + t^7.881/y + t^7.99/y + (4*t^8.16)/y + (4*t^8.27)/y + (6*t^8.44)/y + (8*t^8.55)/y - t^8.611/y + (5*t^8.72)/y + (2*t^8.829)/y - t^8.891/y - t^4.57*y - t^6.59*y - t^6.7*y - t^6.87*y - t^6.98*y + 3*t^7.15*y + t^7.259*y + 2*t^7.321*y + 5*t^7.43*y + 2*t^7.539*y + t^7.601*y + 2*t^7.71*y + t^7.881*y + t^7.99*y + 4*t^8.16*y + 4*t^8.27*y + 6*t^8.44*y + 8*t^8.55*y - t^8.611*y + 5*t^8.72*y + 2*t^8.829*y - t^8.891*y | t^2.02/g1^28 + 2*g1^18*t^2.13 + (2*t^2.3)/g1^20 + g1^26*t^2.41 + t^2.86/g1^4 + g1^4*t^3.14 + 3*g1^12*t^3.42 + t^4.041/g1^56 + (3*t^4.15)/g1^10 + 3*g1^36*t^4.259 + (3*t^4.321)/g1^48 + (5*t^4.43)/g1^2 + 2*g1^44*t^4.539 + (3*t^4.601)/g1^40 + 2*g1^6*t^4.71 + g1^52*t^4.819 + t^4.881/g1^32 + 2*g1^14*t^4.99 + (3*t^5.16)/g1^24 + 3*g1^22*t^5.27 + (5*t^5.44)/g1^16 + 6*g1^30*t^5.55 + (5*t^5.72)/g1^8 + 2*g1^38*t^5.829 - 3*t^6. + t^6.061/g1^84 + (2*t^6.171)/g1^38 + 5*g1^8*t^6.28 + (3*t^6.341)/g1^76 + 4*g1^54*t^6.389 + (7*t^6.45)/g1^30 + 10*g1^16*t^6.56 + (5*t^6.621)/g1^68 + 3*g1^62*t^6.669 + (7*t^6.73)/g1^22 + 8*g1^24*t^6.84 + (5*t^6.901)/g1^60 + 2*g1^70*t^6.949 + (3*t^7.01)/g1^14 + 3*g1^32*t^7.119 + (3*t^7.181)/g1^52 + g1^78*t^7.229 + (4*t^7.29)/g1^6 + 3*g1^40*t^7.399 + (8*t^7.461)/g1^44 + 10*g1^2*t^7.57 + 10*g1^48*t^7.679 + (8*t^7.741)/g1^36 + 9*g1^10*t^7.85 + 4*g1^56*t^7.959 + t^8.02/g1^28 + t^8.082/g1^112 - 3*g1^18*t^8.13 + (2*t^8.191)/g1^66 + 2*g1^64*t^8.239 - (3*t^8.3)/g1^20 + (3*t^8.362)/g1^104 + 3*g1^26*t^8.41 + (6*t^8.471)/g1^58 + 5*g1^72*t^8.519 + (11*t^8.58)/g1^12 + (6*t^8.642)/g1^96 + 13*g1^34*t^8.689 + (10*t^8.751)/g1^50 + 4*g1^80*t^8.799 + (13*t^8.86)/g1^4 + (8*t^8.921)/g1^88 + 13*g1^42*t^8.969 - (g1^2*t^4.57)/y - t^6.59/(g1^26*y) - (g1^20*t^6.7)/y - t^6.87/(g1^18*y) - (g1^28*t^6.98)/y + (3*t^7.15)/(g1^10*y) + (g1^36*t^7.259)/y + (2*t^7.321)/(g1^48*y) + (5*t^7.43)/(g1^2*y) + (2*g1^44*t^7.539)/y + t^7.601/(g1^40*y) + (2*g1^6*t^7.71)/y + t^7.881/(g1^32*y) + (g1^14*t^7.99)/y + (4*t^8.16)/(g1^24*y) + (4*g1^22*t^8.27)/y + (6*t^8.44)/(g1^16*y) + (8*g1^30*t^8.55)/y - t^8.611/(g1^54*y) + (5*t^8.72)/(g1^8*y) + (2*g1^38*t^8.829)/y - t^8.891/(g1^46*y) - g1^2*t^4.57*y - (t^6.59*y)/g1^26 - g1^20*t^6.7*y - (t^6.87*y)/g1^18 - g1^28*t^6.98*y + (3*t^7.15*y)/g1^10 + g1^36*t^7.259*y + (2*t^7.321*y)/g1^48 + (5*t^7.43*y)/g1^2 + 2*g1^44*t^7.539*y + (t^7.601*y)/g1^40 + 2*g1^6*t^7.71*y + (t^7.881*y)/g1^32 + g1^14*t^7.99*y + (4*t^8.16*y)/g1^24 + 4*g1^22*t^8.27*y + (6*t^8.44*y)/g1^16 + 8*g1^30*t^8.55*y - (t^8.611*y)/g1^54 + (5*t^8.72*y)/g1^8 + 2*g1^38*t^8.829*y - (t^8.891*y)/g1^46 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
56452 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}^{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}\tilde{q}_{1}$ | 0.6385 | 0.8413 | 0.759 | [M:[0.9536, 0.8019, 0.8607, 1.1393, 1.1393, 0.7678, 0.709], q:[0.7384, 0.308], qb:[0.4598, 0.4009], phi:[0.5232]] | 2*t^2.127 + 2*t^2.303 + t^2.406 + t^2.861 + t^3.139 + 3*t^3.418 + t^3.975 + t^4.152 + 3*t^4.254 + t^4.328 + 4*t^4.43 + 2*t^4.532 + 3*t^4.607 + 2*t^4.709 + t^4.811 + 2*t^4.988 + 2*t^5.164 + 3*t^5.266 + 2*t^5.443 + 6*t^5.545 + 5*t^5.721 + 2*t^5.824 - 3*t^6. - t^4.57/y - t^4.57*y | detail |