Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
5384 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_2M_5$ + $ M_5M_7$ + $ M_8\phi_1\tilde{q}_1^2$ | 0.6593 | 0.8825 | 0.7472 | [X:[], M:[0.9534, 1.1399, 0.7668, 0.7099, 0.8601, 0.8032, 1.1399, 0.6735], q:[0.7383, 0.3083], qb:[0.4016, 0.4585], phi:[0.5233]] | [X:[], M:[[4], [-12], [20], [-18], [12], [-26], [-12], [28]], q:[[1], [-5]], qb:[[-13], [25]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_8$, $ M_4$, $ q_2\tilde{q}_1$, $ M_3$, $ q_2\tilde{q}_2$, $ M_6$, $ M_1$, $ \phi_1^2$, $ M_2$, $ M_7$, $ \phi_1q_2^2$, $ M_8^2$, $ M_4M_8$, $ M_8q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_4q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_3M_8$, $ M_8q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_3M_4$, $ M_6M_8$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_4M_6$, $ M_6q_2\tilde{q}_1$, $ M_3^2$, $ M_3q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_3M_6$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_2$, $ M_6^2$, $ M_1M_8$, $ M_1M_4$, $ \phi_1q_1\tilde{q}_1$, $ M_1M_3$, $ M_8\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_6$, $ M_4\phi_1^2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_2M_8$, $ M_7M_8$, $ M_3\phi_1^2$, $ M_8\phi_1q_2^2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_2M_4$, $ M_4M_7$, $ M_6\phi_1^2$, $ M_4\phi_1q_2^2$, $ M_7q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_1^2$, $ M_2M_3$, $ M_3M_7$, $ M_3\phi_1q_2^2$, $ M_7q_2\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_2M_6$, $ M_6M_7$, $ M_6\phi_1q_2^2$ | . | -3 | t^2.02 + 2*t^2.13 + 2*t^2.3 + t^2.41 + t^2.86 + t^3.14 + 3*t^3.42 + t^4.04 + 3*t^4.15 + 3*t^4.26 + 3*t^4.32 + 5*t^4.43 + 2*t^4.54 + 3*t^4.6 + 2*t^4.71 + t^4.82 + t^4.88 + 2*t^4.99 + 3*t^5.16 + 3*t^5.27 + 5*t^5.44 + 6*t^5.55 + 5*t^5.72 + 2*t^5.83 - 3*t^6. + t^6.06 + 2*t^6.17 + 5*t^6.28 + 3*t^6.34 + 4*t^6.39 + 7*t^6.45 + 10*t^6.56 + 5*t^6.62 + 3*t^6.67 + 7*t^6.73 + 8*t^6.84 + 5*t^6.9 + 2*t^6.95 + 3*t^7.01 + 3*t^7.12 + 3*t^7.18 + t^7.23 + 4*t^7.29 + 3*t^7.4 + 8*t^7.46 + 10*t^7.57 + 10*t^7.68 + 8*t^7.74 + 9*t^7.85 + 4*t^7.96 + t^8.02 + t^8.08 - 3*t^8.13 + 2*t^8.19 + 2*t^8.24 - 3*t^8.3 + 3*t^8.36 + 3*t^8.41 + 6*t^8.47 + 5*t^8.52 + 11*t^8.58 + 6*t^8.64 + 13*t^8.69 + 10*t^8.75 + 4*t^8.8 + 13*t^8.86 + 8*t^8.92 + 13*t^8.97 - t^4.57/y - t^6.59/y - t^6.7/y - t^6.87/y - t^6.98/y + (3*t^7.15)/y + t^7.26/y + (2*t^7.32)/y + (5*t^7.43)/y + (2*t^7.54)/y + t^7.6/y + (2*t^7.71)/y + t^7.88/y + t^7.99/y + (4*t^8.16)/y + (4*t^8.27)/y + (6*t^8.44)/y + (8*t^8.55)/y - t^8.61/y + (5*t^8.72)/y + (2*t^8.83)/y - t^8.89/y - t^4.57*y - t^6.59*y - t^6.7*y - t^6.87*y - t^6.98*y + 3*t^7.15*y + t^7.26*y + 2*t^7.32*y + 5*t^7.43*y + 2*t^7.54*y + t^7.6*y + 2*t^7.71*y + t^7.88*y + t^7.99*y + 4*t^8.16*y + 4*t^8.27*y + 6*t^8.44*y + 8*t^8.55*y - t^8.61*y + 5*t^8.72*y + 2*t^8.83*y - t^8.89*y | g1^28*t^2.02 + (2*t^2.13)/g1^18 + 2*g1^20*t^2.3 + t^2.41/g1^26 + g1^4*t^2.86 + t^3.14/g1^4 + (3*t^3.42)/g1^12 + g1^56*t^4.04 + 3*g1^10*t^4.15 + (3*t^4.26)/g1^36 + 3*g1^48*t^4.32 + 5*g1^2*t^4.43 + (2*t^4.54)/g1^44 + 3*g1^40*t^4.6 + (2*t^4.71)/g1^6 + t^4.82/g1^52 + g1^32*t^4.88 + (2*t^4.99)/g1^14 + 3*g1^24*t^5.16 + (3*t^5.27)/g1^22 + 5*g1^16*t^5.44 + (6*t^5.55)/g1^30 + 5*g1^8*t^5.72 + (2*t^5.83)/g1^38 - 3*t^6. + g1^84*t^6.06 + 2*g1^38*t^6.17 + (5*t^6.28)/g1^8 + 3*g1^76*t^6.34 + (4*t^6.39)/g1^54 + 7*g1^30*t^6.45 + (10*t^6.56)/g1^16 + 5*g1^68*t^6.62 + (3*t^6.67)/g1^62 + 7*g1^22*t^6.73 + (8*t^6.84)/g1^24 + 5*g1^60*t^6.9 + (2*t^6.95)/g1^70 + 3*g1^14*t^7.01 + (3*t^7.12)/g1^32 + 3*g1^52*t^7.18 + t^7.23/g1^78 + 4*g1^6*t^7.29 + (3*t^7.4)/g1^40 + 8*g1^44*t^7.46 + (10*t^7.57)/g1^2 + (10*t^7.68)/g1^48 + 8*g1^36*t^7.74 + (9*t^7.85)/g1^10 + (4*t^7.96)/g1^56 + g1^28*t^8.02 + g1^112*t^8.08 - (3*t^8.13)/g1^18 + 2*g1^66*t^8.19 + (2*t^8.24)/g1^64 - 3*g1^20*t^8.3 + 3*g1^104*t^8.36 + (3*t^8.41)/g1^26 + 6*g1^58*t^8.47 + (5*t^8.52)/g1^72 + 11*g1^12*t^8.58 + 6*g1^96*t^8.64 + (13*t^8.69)/g1^34 + 10*g1^50*t^8.75 + (4*t^8.8)/g1^80 + 13*g1^4*t^8.86 + 8*g1^88*t^8.92 + (13*t^8.97)/g1^42 - t^4.57/(g1^2*y) - (g1^26*t^6.59)/y - t^6.7/(g1^20*y) - (g1^18*t^6.87)/y - t^6.98/(g1^28*y) + (3*g1^10*t^7.15)/y + t^7.26/(g1^36*y) + (2*g1^48*t^7.32)/y + (5*g1^2*t^7.43)/y + (2*t^7.54)/(g1^44*y) + (g1^40*t^7.6)/y + (2*t^7.71)/(g1^6*y) + (g1^32*t^7.88)/y + t^7.99/(g1^14*y) + (4*g1^24*t^8.16)/y + (4*t^8.27)/(g1^22*y) + (6*g1^16*t^8.44)/y + (8*t^8.55)/(g1^30*y) - (g1^54*t^8.61)/y + (5*g1^8*t^8.72)/y + (2*t^8.83)/(g1^38*y) - (g1^46*t^8.89)/y - (t^4.57*y)/g1^2 - g1^26*t^6.59*y - (t^6.7*y)/g1^20 - g1^18*t^6.87*y - (t^6.98*y)/g1^28 + 3*g1^10*t^7.15*y + (t^7.26*y)/g1^36 + 2*g1^48*t^7.32*y + 5*g1^2*t^7.43*y + (2*t^7.54*y)/g1^44 + g1^40*t^7.6*y + (2*t^7.71*y)/g1^6 + g1^32*t^7.88*y + (t^7.99*y)/g1^14 + 4*g1^24*t^8.16*y + (4*t^8.27*y)/g1^22 + 6*g1^16*t^8.44*y + (8*t^8.55*y)/g1^30 - g1^54*t^8.61*y + 5*g1^8*t^8.72*y + (2*t^8.83*y)/g1^38 - g1^46*t^8.89*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
6885 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_2M_5$ + $ M_5M_7$ + $ M_8\phi_1\tilde{q}_1^2$ + $ M_1M_9$ | 0.655 | 0.8752 | 0.7484 | [X:[], M:[0.9539, 1.1382, 0.7697, 0.7072, 0.8618, 0.7993, 1.1382, 0.6776, 1.0461], q:[0.7385, 0.3076], qb:[0.3997, 0.4622], phi:[0.523]] | t^2.03 + 2*t^2.12 + 2*t^2.31 + t^2.4 + 2*t^3.14 + 3*t^3.41 + t^4.07 + 3*t^4.15 + 3*t^4.24 + 3*t^4.34 + 5*t^4.43 + 2*t^4.52 + 3*t^4.62 + 2*t^4.71 + t^4.8 + 2*t^5.17 + 4*t^5.26 + 7*t^5.45 + 7*t^5.54 + 4*t^5.72 + 2*t^5.81 - 4*t^6. - t^4.57/y - t^4.57*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
3796 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_2M_5$ + $ M_5M_7$ | 0.6385 | 0.8413 | 0.759 | [X:[], M:[0.9536, 1.1393, 0.7678, 0.709, 0.8607, 0.8019, 1.1393], q:[0.7384, 0.308], qb:[0.4009, 0.4598], phi:[0.5232]] | 2*t^2.13 + 2*t^2.3 + t^2.41 + t^2.86 + t^3.14 + 3*t^3.42 + t^3.98 + t^4.15 + 3*t^4.25 + t^4.33 + 4*t^4.43 + 2*t^4.53 + 3*t^4.61 + 2*t^4.71 + t^4.81 + 2*t^4.99 + 2*t^5.16 + 3*t^5.27 + 2*t^5.44 + 6*t^5.54 + 5*t^5.72 + 2*t^5.82 - 3*t^6. - t^4.57/y - t^4.57*y | detail |