Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58099 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}^{2}$ + ${ }M_{1}M_{2}$ + ${ }M_{4}M_{5}$ + ${ }M_{4}M_{7}$ + ${ }M_{2}M_{8}$ 0.6951 0.8523 0.8155 [M:[0.9781, 1.0219, 1.0, 0.9562, 1.0438, 0.9344, 1.0438, 0.9781], q:[0.4672, 0.5547], qb:[0.5109, 0.4891], phi:[0.4945]] [M:[[4], [-4], [0], [8], [-8], [12], [-8], [4]], q:[[6], [-10]], qb:[[-2], [2]], phi:[[1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{1}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{5}$, ${ }M_{7}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{5}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{3}M_{8}$, ${ }\phi_{1}^{4}$, ${ }M_{3}\phi_{1}^{2}$ ${}$ -3 t^2.803 + 2*t^2.934 + t^2.967 + t^3. + 2*t^3.131 + t^4.287 + t^4.352 + 2*t^4.418 + t^4.484 + 2*t^4.549 + t^4.615 + t^4.681 + t^4.812 + t^5.606 + t^5.737 + t^5.77 + t^5.869 + 2*t^5.902 + 3*t^5.934 + t^5.967 - 3*t^6. + t^6.066 + 2*t^6.098 - t^6.197 + 2*t^6.263 + t^7.09 + t^7.155 + 3*t^7.221 + t^7.254 + 2*t^7.287 + 4*t^7.352 + t^7.385 + 3*t^7.418 - t^7.451 + 3*t^7.484 + t^7.516 + 3*t^7.549 - t^7.582 + 2*t^7.615 + 2*t^7.681 - t^7.713 + 2*t^7.746 + t^7.779 + 2*t^7.812 - t^7.845 + 2*t^7.943 + t^8.409 + t^8.54 + 2*t^8.573 + t^8.639 + 3*t^8.705 + t^8.737 + 2*t^8.77 - 3*t^8.803 + 5*t^8.836 + 6*t^8.902 - 6*t^8.934 + t^8.967 - t^4.484/y - t^7.287/y + t^7.352/y - t^7.418/y - t^7.451/y + t^7.516/y + t^7.549/y - t^7.615/y + t^7.681/y + (2*t^8.737)/y + t^8.77/y + t^8.803/y + t^8.869/y + (2*t^8.902)/y + (4*t^8.934)/y + t^8.967/y - t^4.484*y - t^7.287*y + t^7.352*y - t^7.418*y - t^7.451*y + t^7.516*y + t^7.549*y - t^7.615*y + t^7.681*y + 2*t^8.737*y + t^8.77*y + t^8.803*y + t^8.869*y + 2*t^8.902*y + 4*t^8.934*y + t^8.967*y g1^12*t^2.803 + 2*g1^4*t^2.934 + g1^2*t^2.967 + t^3. + (2*t^3.131)/g1^8 + g1^13*t^4.287 + g1^9*t^4.352 + 2*g1^5*t^4.418 + g1*t^4.484 + (2*t^4.549)/g1^3 + t^4.615/g1^7 + t^4.681/g1^11 + t^4.812/g1^19 + g1^24*t^5.606 + g1^16*t^5.737 + g1^14*t^5.77 + g1^8*t^5.869 + 2*g1^6*t^5.902 + 3*g1^4*t^5.934 + g1^2*t^5.967 - 3*t^6. + t^6.066/g1^4 + (2*t^6.098)/g1^6 - t^6.197/g1^12 + (2*t^6.263)/g1^16 + g1^25*t^7.09 + g1^21*t^7.155 + 3*g1^17*t^7.221 + g1^15*t^7.254 + 2*g1^13*t^7.287 + 4*g1^9*t^7.352 + g1^7*t^7.385 + 3*g1^5*t^7.418 - g1^3*t^7.451 + 3*g1*t^7.484 + t^7.516/g1 + (3*t^7.549)/g1^3 - t^7.582/g1^5 + (2*t^7.615)/g1^7 + (2*t^7.681)/g1^11 - t^7.713/g1^13 + (2*t^7.746)/g1^15 + t^7.779/g1^17 + (2*t^7.812)/g1^19 - t^7.845/g1^21 + (2*t^7.943)/g1^27 + g1^36*t^8.409 + g1^28*t^8.54 + 2*g1^26*t^8.573 + g1^22*t^8.639 + 3*g1^18*t^8.705 + g1^16*t^8.737 + 2*g1^14*t^8.77 - 3*g1^12*t^8.803 + 5*g1^10*t^8.836 + 6*g1^6*t^8.902 - 6*g1^4*t^8.934 + g1^2*t^8.967 - (g1*t^4.484)/y - (g1^13*t^7.287)/y + (g1^9*t^7.352)/y - (g1^5*t^7.418)/y - (g1^3*t^7.451)/y + t^7.516/(g1*y) + t^7.549/(g1^3*y) - t^7.615/(g1^7*y) + t^7.681/(g1^11*y) + (2*g1^16*t^8.737)/y + (g1^14*t^8.77)/y + (g1^12*t^8.803)/y + (g1^8*t^8.869)/y + (2*g1^6*t^8.902)/y + (4*g1^4*t^8.934)/y + (g1^2*t^8.967)/y - g1*t^4.484*y - g1^13*t^7.287*y + g1^9*t^7.352*y - g1^5*t^7.418*y - g1^3*t^7.451*y + (t^7.516*y)/g1 + (t^7.549*y)/g1^3 - (t^7.615*y)/g1^7 + (t^7.681*y)/g1^11 + 2*g1^16*t^8.737*y + g1^14*t^8.77*y + g1^12*t^8.803*y + g1^8*t^8.869*y + 2*g1^6*t^8.902*y + 4*g1^4*t^8.934*y + g1^2*t^8.967*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
56013 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}^{2}$ + ${ }M_{1}M_{2}$ + ${ }M_{4}M_{5}$ + ${ }M_{4}M_{7}$ 0.6933 0.8493 0.8163 [M:[0.9843, 1.0157, 1.0, 0.9685, 1.0315, 0.9528, 1.0315], q:[0.4764, 0.5393], qb:[0.5079, 0.4921], phi:[0.4961]] t^2.858 + t^2.953 + t^2.976 + t^3. + t^3.047 + 2*t^3.094 + t^4.347 + t^4.394 + 2*t^4.441 + t^4.488 + 2*t^4.535 + t^4.583 + t^4.63 + t^4.724 + t^5.717 + t^5.835 + t^5.929 + 2*t^5.953 + t^5.976 - 2*t^6. - t^4.488/y - t^4.488*y detail