Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4537 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{6}$ + ${ }M_{1}M_{7}$ + ${ }M_{2}M_{8}$ 0.6951 0.8523 0.8155 [M:[1.0219, 0.9562, 1.0438, 0.9344, 1.0, 0.9781, 0.9781, 1.0438], q:[0.4672, 0.5109], qb:[0.4891, 0.5547], phi:[0.4945]] [M:[[4], [-8], [8], [-12], [0], [-4], [-4], [8]], q:[[-6], [2]], qb:[[-2], [10]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{6}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }M_{3}$, ${ }M_{8}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{5}M_{7}$, ${ }M_{4}M_{8}$, ${ }\phi_{1}^{4}$, ${ }M_{5}\phi_{1}^{2}$ ${}$ -3 t^2.803 + 2*t^2.934 + t^2.967 + t^3. + 2*t^3.131 + t^4.287 + t^4.352 + 2*t^4.418 + t^4.484 + 2*t^4.549 + t^4.615 + t^4.681 + t^4.812 + t^5.606 + t^5.737 + t^5.77 + t^5.869 + 2*t^5.902 + 3*t^5.934 + t^5.967 - 3*t^6. + t^6.066 + 2*t^6.098 - t^6.197 + 2*t^6.263 + t^7.09 + t^7.155 + 3*t^7.221 + t^7.254 + 2*t^7.287 + 4*t^7.352 + t^7.385 + 3*t^7.418 - t^7.451 + 3*t^7.484 + t^7.516 + 3*t^7.549 - t^7.582 + 2*t^7.615 + 2*t^7.681 - t^7.713 + 2*t^7.746 + t^7.779 + 2*t^7.812 - t^7.845 + 2*t^7.943 + t^8.409 + t^8.54 + 2*t^8.573 + t^8.639 + 3*t^8.705 + t^8.737 + 2*t^8.77 - 3*t^8.803 + 5*t^8.836 + 6*t^8.902 - 6*t^8.934 + t^8.967 - t^4.484/y - t^7.287/y + t^7.352/y - t^7.418/y - t^7.451/y + t^7.516/y + t^7.549/y - t^7.615/y + t^7.681/y + (2*t^8.737)/y + t^8.77/y + t^8.803/y + t^8.869/y + (2*t^8.902)/y + (4*t^8.934)/y + t^8.967/y - t^4.484*y - t^7.287*y + t^7.352*y - t^7.418*y - t^7.451*y + t^7.516*y + t^7.549*y - t^7.615*y + t^7.681*y + 2*t^8.737*y + t^8.77*y + t^8.803*y + t^8.869*y + 2*t^8.902*y + 4*t^8.934*y + t^8.967*y t^2.803/g1^12 + (2*t^2.934)/g1^4 + t^2.967/g1^2 + t^3. + 2*g1^8*t^3.131 + t^4.287/g1^13 + t^4.352/g1^9 + (2*t^4.418)/g1^5 + t^4.484/g1 + 2*g1^3*t^4.549 + g1^7*t^4.615 + g1^11*t^4.681 + g1^19*t^4.812 + t^5.606/g1^24 + t^5.737/g1^16 + t^5.77/g1^14 + t^5.869/g1^8 + (2*t^5.902)/g1^6 + (3*t^5.934)/g1^4 + t^5.967/g1^2 - 3*t^6. + g1^4*t^6.066 + 2*g1^6*t^6.098 - g1^12*t^6.197 + 2*g1^16*t^6.263 + t^7.09/g1^25 + t^7.155/g1^21 + (3*t^7.221)/g1^17 + t^7.254/g1^15 + (2*t^7.287)/g1^13 + (4*t^7.352)/g1^9 + t^7.385/g1^7 + (3*t^7.418)/g1^5 - t^7.451/g1^3 + (3*t^7.484)/g1 + g1*t^7.516 + 3*g1^3*t^7.549 - g1^5*t^7.582 + 2*g1^7*t^7.615 + 2*g1^11*t^7.681 - g1^13*t^7.713 + 2*g1^15*t^7.746 + g1^17*t^7.779 + 2*g1^19*t^7.812 - g1^21*t^7.845 + 2*g1^27*t^7.943 + t^8.409/g1^36 + t^8.54/g1^28 + (2*t^8.573)/g1^26 + t^8.639/g1^22 + (3*t^8.705)/g1^18 + t^8.737/g1^16 + (2*t^8.77)/g1^14 - (3*t^8.803)/g1^12 + (5*t^8.836)/g1^10 + (6*t^8.902)/g1^6 - (6*t^8.934)/g1^4 + t^8.967/g1^2 - t^4.484/(g1*y) - t^7.287/(g1^13*y) + t^7.352/(g1^9*y) - t^7.418/(g1^5*y) - t^7.451/(g1^3*y) + (g1*t^7.516)/y + (g1^3*t^7.549)/y - (g1^7*t^7.615)/y + (g1^11*t^7.681)/y + (2*t^8.737)/(g1^16*y) + t^8.77/(g1^14*y) + t^8.803/(g1^12*y) + t^8.869/(g1^8*y) + (2*t^8.902)/(g1^6*y) + (4*t^8.934)/(g1^4*y) + t^8.967/(g1^2*y) - (t^4.484*y)/g1 - (t^7.287*y)/g1^13 + (t^7.352*y)/g1^9 - (t^7.418*y)/g1^5 - (t^7.451*y)/g1^3 + g1*t^7.516*y + g1^3*t^7.549*y - g1^7*t^7.615*y + g1^11*t^7.681*y + (2*t^8.737*y)/g1^16 + (t^8.77*y)/g1^14 + (t^8.803*y)/g1^12 + (t^8.869*y)/g1^8 + (2*t^8.902*y)/g1^6 + (4*t^8.934*y)/g1^4 + (t^8.967*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2484 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{6}$ + ${ }M_{1}M_{7}$ 0.7002 0.8623 0.8121 [M:[1.0338, 0.9325, 1.0675, 0.8987, 1.0, 0.9662, 0.9662], q:[0.4494, 0.5169], qb:[0.4831, 0.5844], phi:[0.4916]] t^2.696 + t^2.797 + 2*t^2.899 + t^2.949 + t^3. + t^3.203 + t^4.171 + t^4.272 + 2*t^4.373 + t^4.475 + 2*t^4.576 + t^4.677 + t^4.779 + t^4.981 + t^5.392 + t^5.494 + 2*t^5.595 + t^5.646 + 2*t^5.696 + t^5.747 + 2*t^5.797 + 2*t^5.848 + 2*t^5.899 + t^5.949 - 2*t^6. - t^4.475/y - t^4.475*y detail