Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57923 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ 1.3469 1.5367 0.8765 [X:[1.4182], M:[0.7272, 0.7272], q:[0.3698, 0.8061], qb:[0.6122, 0.4667], phi:[0.2909]] [X:[[0, 4]], M:[[0, -5], [0, -5]], q:[[-1, 8], [-1, 5]], qb:[[1, -1], [1, 0]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}^{3}$ ${}\phi_{1}^{4}q_{1}\tilde{q}_{2}$ -2 2*t^2.18 + t^2.51 + t^2.62 + t^2.95 + t^3.38 + 3*t^4.25 + 3*t^4.36 + 3*t^4.69 + 2*t^4.8 + t^5.02 + 4*t^5.13 + t^5.24 + t^5.46 + 2*t^5.51 + 2*t^5.56 + 2*t^5.89 + 2*t^5.95 - 2*t^6. + t^6.33 + 2*t^6.38 + 3*t^6.44 + 4*t^6.54 + 4*t^6.76 + 2*t^6.82 + 5*t^6.87 + 3*t^6.98 + 6*t^7.2 + 5*t^7.31 + 2*t^7.42 + t^7.53 + 7*t^7.64 + 2*t^7.69 + 4*t^7.75 + t^7.85 + t^7.96 + 2*t^8.02 + 5*t^8.07 + 2*t^8.13 - 5*t^8.18 + 2*t^8.4 + 4*t^8.46 + 5*t^8.51 + 2*t^8.56 + 3*t^8.62 + 5*t^8.73 + 2*t^8.84 + 6*t^8.89 + 3*t^8.95 + t^8.62/y^2 - t^3.87/y - t^4.75/y - (2*t^6.05)/y - t^6.38/y - t^6.49/y - t^6.82/y - (2*t^6.93)/y - t^7.25/y + (2*t^7.69)/y + (2*t^7.8)/y + t^8.13/y - (3*t^8.24)/y + t^8.46/y + (2*t^8.56)/y - (2*t^8.67)/y - t^3.87*y - t^4.75*y - 2*t^6.05*y - t^6.38*y - t^6.49*y - t^6.82*y - 2*t^6.93*y - t^7.25*y + 2*t^7.69*y + 2*t^7.8*y + t^8.13*y - 3*t^8.24*y + t^8.46*y + 2*t^8.56*y - 2*t^8.67*y + t^8.62*y^2 (2*t^2.18)/g2^5 + g2^8*t^2.51 + t^2.62/g2^6 + g2^7*t^2.95 + g2^6*t^3.38 + 3*g2^4*t^4.25 + (3*t^4.36)/g2^10 + 3*g2^3*t^4.69 + (2*t^4.8)/g2^11 + g2^16*t^5.02 + 4*g2^2*t^5.13 + t^5.24/g2^12 + g2^15*t^5.46 + (g1^3*t^5.51)/g2^3 + (g2^19*t^5.51)/g1^3 + 2*g2*t^5.56 + 2*g2^14*t^5.89 + (g1^3*t^5.95)/g2^4 + (g2^18*t^5.95)/g1^3 - 2*t^6. + g2^13*t^6.33 + (g1^3*t^6.38)/g2^5 + (g2^17*t^6.38)/g1^3 + (3*t^6.44)/g2 + (4*t^6.54)/g2^15 + 4*g2^12*t^6.76 + (g1^3*t^6.82)/g2^6 + (g2^16*t^6.82)/g1^3 + (5*t^6.87)/g2^2 + (3*t^6.98)/g2^16 + 6*g2^11*t^7.2 + (5*t^7.31)/g2^3 + (2*t^7.42)/g2^17 + g2^24*t^7.53 + 7*g2^10*t^7.64 + (g1^3*t^7.69)/g2^8 + (g2^14*t^7.69)/g1^3 + (4*t^7.75)/g2^4 + t^7.85/g2^18 + g2^23*t^7.96 + g1^3*g2^5*t^8.02 + (g2^27*t^8.02)/g1^3 + 5*g2^9*t^8.07 + (g1^3*t^8.13)/g2^9 + (g2^13*t^8.13)/g1^3 - (5*t^8.18)/g2^5 + 2*g2^22*t^8.4 + 2*g1^3*g2^4*t^8.46 + (2*g2^26*t^8.46)/g1^3 + 5*g2^8*t^8.51 + (g1^3*t^8.56)/g2^10 + (g2^12*t^8.56)/g1^3 + (3*t^8.62)/g2^6 + (5*t^8.73)/g2^20 + 2*g2^21*t^8.84 + 3*g1^3*g2^3*t^8.89 + (3*g2^25*t^8.89)/g1^3 + 3*g2^7*t^8.95 + t^8.62/(g2^6*y^2) - t^3.87/(g2^2*y) - t^4.75/(g2^4*y) - (2*t^6.05)/(g2^7*y) - (g2^6*t^6.38)/y - t^6.49/(g2^8*y) - (g2^5*t^6.82)/y - (2*t^6.93)/(g2^9*y) - (g2^4*t^7.25)/y + (2*g2^3*t^7.69)/y + (2*t^7.8)/(g2^11*y) + (g2^2*t^8.13)/y - (3*t^8.24)/(g2^12*y) + (g2^15*t^8.46)/y + (2*g2*t^8.56)/y - (2*t^8.67)/(g2^13*y) - (t^3.87*y)/g2^2 - (t^4.75*y)/g2^4 - (2*t^6.05*y)/g2^7 - g2^6*t^6.38*y - (t^6.49*y)/g2^8 - g2^5*t^6.82*y - (2*t^6.93*y)/g2^9 - g2^4*t^7.25*y + 2*g2^3*t^7.69*y + (2*t^7.8*y)/g2^11 + g2^2*t^8.13*y - (3*t^8.24*y)/g2^12 + g2^15*t^8.46*y + 2*g2*t^8.56*y - (2*t^8.67*y)/g2^13 + (t^8.62*y^2)/g2^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57295 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ 1.3271 1.5011 0.8841 [X:[1.4141], M:[0.7323], q:[0.3653, 0.8047], qb:[0.6094, 0.463], phi:[0.2929]] t^2.197 + t^2.485 + t^2.636 + t^2.924 + t^3.364 + t^3.803 + 3*t^4.242 + t^4.394 + 2*t^4.682 + t^4.833 + t^4.97 + 3*t^5.121 + t^5.273 + t^5.409 + 2*t^5.485 + t^5.561 + 2*t^5.848 + 2*t^5.924 - t^6. - t^3.879/y - t^4.758/y - t^3.879*y - t^4.758*y detail