Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57922 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.3388 | 1.5178 | 0.8821 | [X:[1.4265], M:[0.7169, 0.8603], q:[0.3787, 0.8088], qb:[0.6177, 0.4743], phi:[0.2868]] | [X:[[0, 4]], M:[[0, -5], [0, -6]], q:[[-1, 8], [-1, 5]], qb:[[1, -1], [1, 0]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{6}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}^{3}$ | ${}$ | -2 | t^2.15 + t^2.56 + 2*t^2.58 + t^2.99 + t^3.85 + 3*t^4.28 + t^4.3 + 2*t^4.71 + 2*t^4.73 + t^5.12 + 4*t^5.14 + 3*t^5.16 + t^5.55 + 2*t^5.56 + t^5.57 + t^5.98 + 2*t^5.99 - 2*t^6. + t^6.41 + 2*t^6.42 + 2*t^6.43 + t^6.45 + 4*t^6.84 + 2*t^6.85 + 5*t^6.86 + 2*t^6.88 + 5*t^7.27 + 3*t^7.29 + 3*t^7.31 + t^7.68 + 5*t^7.7 + 5*t^7.72 + 4*t^7.74 + t^8.11 + 2*t^8.12 + 5*t^8.13 + 2*t^8.14 - 2*t^8.15 + t^8.54 + 4*t^8.55 + 4*t^8.56 + 2*t^8.57 - 2*t^8.58 + t^8.6 + 2*t^8.97 + 4*t^8.98 + 2*t^8.99 + t^8.58/y^2 - t^3.86/y - t^4.72/y - t^6.01/y - t^6.42/y - (2*t^6.44)/y - t^6.85/y - t^6.87/y - (2*t^7.3)/y + (2*t^7.73)/y + (2*t^8.14)/y + t^8.55/y + t^8.57/y - (2*t^8.59)/y - t^8.98/y - t^3.86*y - t^4.72*y - t^6.01*y - t^6.42*y - 2*t^6.44*y - t^6.85*y - t^6.87*y - 2*t^7.3*y + 2*t^7.73*y + 2*t^8.14*y + t^8.55*y + t^8.57*y - 2*t^8.59*y - t^8.98*y + t^8.58*y^2 | t^2.15/g2^5 + g2^8*t^2.56 + (2*t^2.58)/g2^6 + g2^7*t^2.99 + g2^5*t^3.85 + 3*g2^4*t^4.28 + t^4.3/g2^10 + 2*g2^3*t^4.71 + (2*t^4.73)/g2^11 + g2^16*t^5.12 + 4*g2^2*t^5.14 + (3*t^5.16)/g2^12 + g2^15*t^5.55 + (g1^3*t^5.56)/g2^3 + (g2^19*t^5.56)/g1^3 + g2*t^5.57 + g2^14*t^5.98 + (g1^3*t^5.99)/g2^4 + (g2^18*t^5.99)/g1^3 - 2*t^6. + g2^13*t^6.41 + (g1^3*t^6.42)/g2^5 + (g2^17*t^6.42)/g1^3 + (2*t^6.43)/g2 + t^6.45/g2^15 + 4*g2^12*t^6.84 + (g1^3*t^6.85)/g2^6 + (g2^16*t^6.85)/g1^3 + (5*t^6.86)/g2^2 + (2*t^6.88)/g2^16 + 5*g2^11*t^7.27 + (3*t^7.29)/g2^3 + (3*t^7.31)/g2^17 + g2^24*t^7.68 + 5*g2^10*t^7.7 + (5*t^7.72)/g2^4 + (4*t^7.74)/g2^18 + g2^23*t^8.11 + g1^3*g2^5*t^8.12 + (g2^27*t^8.12)/g1^3 + 5*g2^9*t^8.13 + (g1^3*t^8.14)/g2^9 + (g2^13*t^8.14)/g1^3 - (2*t^8.15)/g2^5 + g2^22*t^8.54 + 2*g1^3*g2^4*t^8.55 + (2*g2^26*t^8.55)/g1^3 + 4*g2^8*t^8.56 + (g1^3*t^8.57)/g2^10 + (g2^12*t^8.57)/g1^3 - (2*t^8.58)/g2^6 + t^8.6/g2^20 + 2*g2^21*t^8.97 + 2*g1^3*g2^3*t^8.98 + (2*g2^25*t^8.98)/g1^3 + 2*g2^7*t^8.99 + t^8.58/(g2^6*y^2) - t^3.86/(g2^2*y) - t^4.72/(g2^4*y) - t^6.01/(g2^7*y) - (g2^6*t^6.42)/y - (2*t^6.44)/(g2^8*y) - (g2^5*t^6.85)/y - t^6.87/(g2^9*y) - (2*t^7.3)/(g2^10*y) + (2*t^7.73)/(g2^11*y) + (2*g2^2*t^8.14)/y + (g2^15*t^8.55)/y + (g2*t^8.57)/y - (2*t^8.59)/(g2^13*y) - (g2^14*t^8.98)/y - (t^3.86*y)/g2^2 - (t^4.72*y)/g2^4 - (t^6.01*y)/g2^7 - g2^6*t^6.42*y - (2*t^6.44*y)/g2^8 - g2^5*t^6.85*y - (t^6.87*y)/g2^9 - (2*t^7.3*y)/g2^10 + (2*t^7.73*y)/g2^11 + 2*g2^2*t^8.14*y + g2^15*t^8.55*y + g2*t^8.57*y - (2*t^8.59*y)/g2^13 - g2^14*t^8.98*y + (t^8.58*y^2)/g2^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57295 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ | 1.3271 | 1.5011 | 0.8841 | [X:[1.4141], M:[0.7323], q:[0.3653, 0.8047], qb:[0.6094, 0.463], phi:[0.2929]] | t^2.197 + t^2.485 + t^2.636 + t^2.924 + t^3.364 + t^3.803 + 3*t^4.242 + t^4.394 + 2*t^4.682 + t^4.833 + t^4.97 + 3*t^5.121 + t^5.273 + t^5.409 + 2*t^5.485 + t^5.561 + 2*t^5.848 + 2*t^5.924 - t^6. - t^3.879/y - t^4.758/y - t^3.879*y - t^4.758*y | detail |