Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57438 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 1.4541 1.6441 0.8844 [M:[1.3297, 0.9816], q:[0.5158, 0.479], qb:[0.5026, 0.4916], phi:[0.3352]] [M:[[0, -2, 2], [1, 6, 0]], q:[[-1, -12, 0], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, 1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$ ${}$ -4 t^2.912 + 2*t^2.945 + t^3.016 + t^3.022 + t^3.917 + t^3.95 + t^3.989 + t^4.028 + t^4.061 + t^4.923 + t^4.956 + t^5.033 + t^5.066 + t^5.427 + t^5.463 + t^5.496 + t^5.537 + t^5.824 + 2*t^5.857 + 2*t^5.89 + t^5.928 + t^5.934 + 2*t^5.961 + t^5.967 - 4*t^6. + t^6.039 + t^6.044 - t^6.11 + t^6.433 + t^6.468 + t^6.501 + t^6.543 + t^6.829 + 3*t^6.862 + t^6.895 + t^6.901 + 3*t^6.934 + 2*t^6.94 + t^6.967 + 3*t^6.973 + t^7.011 - t^7.038 + t^7.044 + t^7.05 + t^7.077 + t^7.083 - t^7.116 + t^7.328 - t^7.435 + t^7.438 + t^7.441 + t^7.474 - t^7.477 + t^7.507 - t^7.51 + t^7.54 - t^7.546 + t^7.548 + t^7.658 + 2*t^7.835 + 4*t^7.868 + 2*t^7.901 + t^7.939 + 3*t^7.945 + t^7.972 + 5*t^7.978 + t^8.011 - t^8.044 + t^8.05 + 2*t^8.055 + t^8.083 + 2*t^8.088 + t^8.339 + t^8.372 + t^8.375 - t^8.405 + 2*t^8.408 + t^8.444 + 2*t^8.449 - t^8.474 + t^8.479 + t^8.485 + t^8.512 - 2*t^8.515 - 2*t^8.551 + t^8.554 + t^8.559 - t^8.584 - t^8.592 - t^8.625 + t^8.736 + 2*t^8.769 + 2*t^8.802 + 2*t^8.835 + 2*t^8.84 + t^8.846 + 4*t^8.873 + t^8.879 + 3*t^8.906 - 4*t^8.912 - 7*t^8.945 + 3*t^8.951 + t^8.956 + t^8.978 + 4*t^8.984 + t^8.989 - t^4.005/y - t^5.011/y - t^6.917/y - (2*t^6.95)/y - t^7.022/y - t^7.028/y - t^7.923/y - (2*t^7.956)/y - t^8.027/y - t^8.033/y + (2*t^8.857)/y + t^8.89/y + t^8.934/y + t^8.961/y + (2*t^8.967)/y - t^4.005*y - t^5.011*y - t^6.917*y - 2*t^6.95*y - t^7.022*y - t^7.028*y - t^7.923*y - 2*t^7.956*y - t^8.027*y - t^8.033*y + 2*t^8.857*y + t^8.89*y + t^8.934*y + t^8.961*y + 2*t^8.967*y g1*g3^6*t^2.912 + 2*g1*g2^6*t^2.945 + (g2^3*t^3.016)/g3^3 + (g3^6*t^3.022)/(g1*g2^12) + g1*g2*g3^5*t^3.917 + (g1*g2^7*t^3.95)/g3 + (g3^2*t^3.989)/g2^2 + (g3^5*t^4.028)/(g1*g2^11) + t^4.061/(g1*g2^5*g3) + g1*g2^2*g3^4*t^4.923 + (g1*g2^8*t^4.956)/g3^2 + (g3^4*t^5.033)/(g1*g2^10) + t^5.066/(g1*g2^4*g3^2) + (g1*t^5.427)/(g2^11*g3) + g2^7*g3^11*t^5.463 + g2^13*g3^5*t^5.496 + t^5.537/(g1*g2^23*g3) + g1^2*g3^12*t^5.824 + 2*g1^2*g2^6*g3^6*t^5.857 + 2*g1^2*g2^12*t^5.89 + g1*g2^3*g3^3*t^5.928 + (g3^12*t^5.934)/g2^12 + (2*g1*g2^9*t^5.961)/g3^3 + (g3^6*t^5.967)/g2^6 - 4*t^6. + (g3^3*t^6.039)/(g1*g2^9) + (g3^12*t^6.044)/(g1^2*g2^24) - t^6.11/(g1^2*g2^12) + (g1*t^6.433)/(g2^10*g3^2) + g2^8*g3^10*t^6.468 + g2^14*g3^4*t^6.501 + t^6.543/(g1*g2^22*g3^2) + g1^2*g2*g3^11*t^6.829 + 3*g1^2*g2^7*g3^5*t^6.862 + (g1^2*g2^13*t^6.895)/g3 + (g1*g3^8*t^6.901)/g2^2 + 3*g1*g2^4*g3^2*t^6.934 + (2*g3^11*t^6.94)/g2^11 + (g1*g2^10*t^6.967)/g3^4 + (3*g3^5*t^6.973)/g2^5 + (g3^8*t^7.011)/(g1*g2^14) - (g2^7*t^7.038)/g3^7 + (g3^2*t^7.044)/(g1*g2^8) + (g3^11*t^7.05)/(g1^2*g2^23) + t^7.077/(g1*g2^2*g3^4) + (g3^5*t^7.083)/(g1^2*g2^17) - t^7.116/(g1^2*g2^11*g3) + (g1^3*g2^3*t^7.328)/g3^3 - g1*g2^18*g3^6*t^7.435 + (g1*t^7.438)/(g2^9*g3^3) + g2^3*g3^15*t^7.441 + g2^9*g3^9*t^7.474 - t^7.477/g2^18 + g2^15*g3^3*t^7.507 - t^7.51/(g2^12*g3^6) + (g2^21*t^7.54)/g3^3 - (g2^6*g3^6*t^7.546)/g1 + t^7.548/(g1*g2^21*g3^3) + t^7.658/(g1^3*g2^33*g3^3) + 2*g1^2*g2^2*g3^10*t^7.835 + 4*g1^2*g2^8*g3^4*t^7.868 + (2*g1^2*g2^14*t^7.901)/g3^2 + g1*g2^5*g3*t^7.939 + (3*g3^10*t^7.945)/g2^10 + (g1*g2^11*t^7.972)/g3^5 + (5*g3^4*t^7.978)/g2^4 + (g2^2*t^8.011)/g3^2 - (g2^8*t^8.044)/g3^8 + (g3*t^8.05)/(g1*g2^7) + (2*g3^10*t^8.055)/(g1^2*g2^22) + t^8.083/(g1*g2*g3^5) + (2*g3^4*t^8.088)/(g1^2*g2^16) + (g1^2*g3^5*t^8.339)/g2^11 + (g1^2*t^8.372)/(g2^5*g3) + g1*g2^7*g3^17*t^8.375 - (g1^2*g2*t^8.405)/g3^7 + 2*g1*g2^13*g3^11*t^8.408 + (g1*t^8.444)/(g2^8*g3^4) + (2*g3^5*t^8.449)/g2^23 - (g1*g2^25*t^8.474)/g3 + g2^10*g3^8*t^8.479 + (g3^17*t^8.485)/(g1*g2^5) + g2^16*g3^2*t^8.512 - (2*t^8.515)/(g2^11*g3^7) - (2*g2^7*g3^5*t^8.551)/g1 + t^8.554/(g1*g2^20*g3^4) + (g3^5*t^8.559)/(g1^2*g2^35) - (g2^13*t^8.584)/(g1*g3) - t^8.592/(g1^2*g2^29*g3) - t^8.625/(g1^2*g2^23*g3^7) + g1^3*g3^18*t^8.736 + 2*g1^3*g2^6*g3^12*t^8.769 + 2*g1^3*g2^12*g3^6*t^8.802 + 2*g1^3*g2^18*t^8.835 + 2*g1^2*g2^3*g3^9*t^8.84 + (g1*g3^18*t^8.846)/g2^12 + 4*g1^2*g2^9*g3^3*t^8.873 + (g1*g3^12*t^8.879)/g2^6 + (3*g1^2*g2^15*t^8.906)/g3^3 - 4*g1*g3^6*t^8.912 - 7*g1*g2^6*t^8.945 + (3*g3^9*t^8.951)/g2^9 + (g3^18*t^8.956)/(g1*g2^24) + (g1*g2^12*t^8.978)/g3^6 + (4*g3^3*t^8.984)/g2^3 + (g3^12*t^8.989)/(g1*g2^18) - (g2*t^4.005)/(g3*y) - (g2^2*t^5.011)/(g3^2*y) - (g1*g2*g3^5*t^6.917)/y - (2*g1*g2^7*t^6.95)/(g3*y) - (g2^4*t^7.022)/(g3^4*y) - (g3^5*t^7.028)/(g1*g2^11*y) - (g1*g2^2*g3^4*t^7.923)/y - (2*g1*g2^8*t^7.956)/(g3^2*y) - (g2^5*t^8.027)/(g3^5*y) - (g3^4*t^8.033)/(g1*g2^10*y) + (2*g1^2*g2^6*g3^6*t^8.857)/y + (g1^2*g2^12*t^8.89)/y + (g3^12*t^8.934)/(g2^12*y) + (g1*g2^9*t^8.961)/(g3^3*y) + (2*g3^6*t^8.967)/(g2^6*y) - (g2*t^4.005*y)/g3 - (g2^2*t^5.011*y)/g3^2 - g1*g2*g3^5*t^6.917*y - (2*g1*g2^7*t^6.95*y)/g3 - (g2^4*t^7.022*y)/g3^4 - (g3^5*t^7.028*y)/(g1*g2^11) - g1*g2^2*g3^4*t^7.923*y - (2*g1*g2^8*t^7.956*y)/g3^2 - (g2^5*t^8.027*y)/g3^5 - (g3^4*t^8.033*y)/(g1*g2^10) + 2*g1^2*g2^6*g3^6*t^8.857*y + g1^2*g2^12*t^8.89*y + (g3^12*t^8.934*y)/g2^12 + (g1*g2^9*t^8.961*y)/g3^3 + (2*g3^6*t^8.967*y)/g2^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47902 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ 1.4533 1.6422 0.885 [M:[1.3296], q:[0.4972, 0.4972], qb:[0.5028, 0.4916], phi:[0.3352]] 2*t^2.966 + 2*t^3. + t^3.017 + 2*t^3.972 + t^3.989 + 2*t^4.006 + 2*t^4.978 + 2*t^5.011 + t^5.464 + 2*t^5.48 + t^5.497 + 3*t^5.933 + 3*t^5.966 + 2*t^5.983 - 3*t^6. - t^4.006/y - t^5.011/y - t^4.006*y - t^5.011*y detail