Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47902 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ | 1.4533 | 1.6422 | 0.885 | [M:[1.3296], q:[0.4972, 0.4972], qb:[0.5028, 0.4916], phi:[0.3352]] | [M:[[0, -2, 2]], q:[[-1, -12, 0], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, 1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | ${}$ | -3 | 2*t^2.966 + 2*t^3. + t^3.017 + 2*t^3.972 + t^3.989 + 2*t^4.006 + 2*t^4.978 + 2*t^5.011 + t^5.464 + 2*t^5.48 + t^5.497 + 3*t^5.933 + 3*t^5.966 + 2*t^5.983 - 3*t^6. + 2*t^6.017 + t^6.469 + 2*t^6.486 + t^6.503 + 4*t^6.939 + 2*t^6.955 + 7*t^6.972 + 4*t^6.989 + 2*t^7.022 - t^7.039 + t^7.441 + 4*t^7.491 - 2*t^7.492 - t^7.508 + t^7.509 + t^7.542 + 7*t^7.944 + 11*t^7.978 + 2*t^7.994 + 3*t^8.011 + 2*t^8.028 - t^8.045 + 2*t^8.43 + 4*t^8.447 + 2*t^8.464 + t^8.481 - 3*t^8.514 - 2*t^8.531 + 4*t^8.899 + 4*t^8.933 + 7*t^8.95 - 8*t^8.966 + 10*t^8.983 - t^4.006/y - t^5.011/y - (2*t^6.972)/y - (2*t^7.006)/y - t^7.022/y - (2*t^7.978)/y - (2*t^8.011)/y - t^8.028/y + t^8.933/y + (4*t^8.966)/y - t^4.006*y - t^5.011*y - 2*t^6.972*y - 2*t^7.006*y - t^7.022*y - 2*t^7.978*y - 2*t^8.011*y - t^8.028*y + t^8.933*y + 4*t^8.966*y | g1*g3^6*t^2.966 + (g3^6*t^2.966)/(g1*g2^12) + t^3./(g1*g2^6) + g1*g2^6*t^3. + (g2^3*t^3.017)/g3^3 + (g3^5*t^3.972)/(g1*g2^11) + g1*g2*g3^5*t^3.972 + (g3^2*t^3.989)/g2^2 + t^4.006/(g1*g2^5*g3) + (g1*g2^7*t^4.006)/g3 + (g3^4*t^4.978)/(g1*g2^10) + g1*g2^2*g3^4*t^4.978 + t^5.011/(g1*g2^4*g3^2) + (g1*g2^8*t^5.011)/g3^2 + g2^7*g3^11*t^5.464 + t^5.48/(g1*g2^23*g3) + (g1*t^5.48)/(g2^11*g3) + g2^13*g3^5*t^5.497 + g1^2*g3^12*t^5.933 + (g3^12*t^5.933)/(g1^2*g2^24) + (g3^12*t^5.933)/g2^12 + (g3^6*t^5.966)/(g1^2*g2^18) + (g3^6*t^5.966)/g2^6 + g1^2*g2^6*g3^6*t^5.966 + (g3^3*t^5.983)/(g1*g2^9) + g1*g2^3*g3^3*t^5.983 - 3*t^6. + t^6.017/(g1*g2^3*g3^3) + (g1*g2^9*t^6.017)/g3^3 + g2^8*g3^10*t^6.469 + t^6.486/(g1*g2^22*g3^2) + (g1*t^6.486)/(g2^10*g3^2) + g2^14*g3^4*t^6.503 + (g3^11*t^6.939)/(g1^2*g2^23) + (2*g3^11*t^6.939)/g2^11 + g1^2*g2*g3^11*t^6.939 + (g3^8*t^6.955)/(g1*g2^14) + (g1*g3^8*t^6.955)/g2^2 + (2*g3^5*t^6.972)/(g1^2*g2^17) + (3*g3^5*t^6.972)/g2^5 + 2*g1^2*g2^7*g3^5*t^6.972 + (2*g3^2*t^6.989)/(g1*g2^8) + 2*g1*g2^4*g3^2*t^6.989 + t^7.022/(g1*g2^2*g3^4) + (g1*g2^10*t^7.022)/g3^4 - (g2^7*t^7.039)/g3^7 + g2^3*g3^15*t^7.441 - t^7.475/g2^18 + g2^9*g3^9*t^7.475 + t^7.491/(g1^3*g2^33*g3^3) + t^7.491/(g1*g2^21*g3^3) + (g1*t^7.491)/(g2^9*g3^3) + (g1^3*g2^3*t^7.491)/g3^3 - (g2^6*g3^6*t^7.492)/g1 - g1*g2^18*g3^6*t^7.492 - t^7.508/(g2^12*g3^6) + g2^15*g3^3*t^7.509 + (g2^21*t^7.542)/g3^3 + (2*g3^10*t^7.944)/(g1^2*g2^22) + (3*g3^10*t^7.944)/g2^10 + 2*g1^2*g2^2*g3^10*t^7.944 + (3*g3^4*t^7.978)/(g1^2*g2^16) + (5*g3^4*t^7.978)/g2^4 + 3*g1^2*g2^8*g3^4*t^7.978 + (g3*t^7.994)/(g1*g2^7) + g1*g2^5*g3*t^7.994 + t^8.011/(g1^2*g2^10*g3^2) + (g2^2*t^8.011)/g3^2 + (g1^2*g2^14*t^8.011)/g3^2 + t^8.028/(g1*g2*g3^5) + (g1*g2^11*t^8.028)/g3^5 - (g2^8*t^8.045)/g3^8 + (g3^17*t^8.43)/(g1*g2^5) + g1*g2^7*g3^17*t^8.43 + (g3^5*t^8.447)/(g1^2*g2^35) + (2*g3^5*t^8.447)/g2^23 + (g1^2*g3^5*t^8.447)/g2^11 + (g2*g3^11*t^8.464)/g1 + g1*g2^13*g3^11*t^8.464 + g2^10*g3^8*t^8.481 + t^8.497/(g1*g2^20*g3^4) + (g1*t^8.497)/(g2^8*g3^4) - (g2^7*g3^5*t^8.497)/g1 - g1*g2^19*g3^5*t^8.497 - t^8.514/(g1^2*g2^23*g3^7) - (2*t^8.514)/(g2^11*g3^7) - (g1^2*g2*t^8.514)/g3^7 + g2^16*g3^2*t^8.514 - (g2^13*t^8.531)/(g1*g3) - (g1*g2^25*t^8.531)/g3 + g1^3*g3^18*t^8.899 + (g3^18*t^8.899)/(g1^3*g2^36) + (g3^18*t^8.899)/(g1*g2^24) + (g1*g3^18*t^8.899)/g2^12 + (g3^12*t^8.933)/(g1^3*g2^30) + (g3^12*t^8.933)/(g1*g2^18) + (g1*g3^12*t^8.933)/g2^6 + g1^3*g2^6*g3^12*t^8.933 + (2*g3^9*t^8.95)/(g1^2*g2^21) + (3*g3^9*t^8.95)/g2^9 + 2*g1^2*g2^3*g3^9*t^8.95 - 4*g1*g3^6*t^8.966 - (4*g3^6*t^8.966)/(g1*g2^12) + (3*g3^3*t^8.983)/(g1^2*g2^15) + (4*g3^3*t^8.983)/g2^3 + 3*g1^2*g2^9*g3^3*t^8.983 - (g2*t^4.006)/(g3*y) - (g2^2*t^5.011)/(g3^2*y) - (g3^5*t^6.972)/(g1*g2^11*y) - (g1*g2*g3^5*t^6.972)/y - t^7.006/(g1*g2^5*g3*y) - (g1*g2^7*t^7.006)/(g3*y) - (g2^4*t^7.022)/(g3^4*y) - (g3^4*t^7.978)/(g1*g2^10*y) - (g1*g2^2*g3^4*t^7.978)/y - t^8.011/(g1*g2^4*g3^2*y) - (g1*g2^8*t^8.011)/(g3^2*y) - (g2^5*t^8.028)/(g3^5*y) + (g3^12*t^8.933)/(g2^12*y) + (g3^6*t^8.966)/(g1^2*g2^18*y) + (2*g3^6*t^8.966)/(g2^6*y) + (g1^2*g2^6*g3^6*t^8.966)/y - (g2*t^4.006*y)/g3 - (g2^2*t^5.011*y)/g3^2 - (g3^5*t^6.972*y)/(g1*g2^11) - g1*g2*g3^5*t^6.972*y - (t^7.006*y)/(g1*g2^5*g3) - (g1*g2^7*t^7.006*y)/g3 - (g2^4*t^7.022*y)/g3^4 - (g3^4*t^7.978*y)/(g1*g2^10) - g1*g2^2*g3^4*t^7.978*y - (t^8.011*y)/(g1*g2^4*g3^2) - (g1*g2^8*t^8.011*y)/g3^2 - (g2^5*t^8.028*y)/g3^5 + (g3^12*t^8.933*y)/g2^12 + (g3^6*t^8.966*y)/(g1^2*g2^18) + (2*g3^6*t^8.966*y)/g2^6 + g1^2*g2^6*g3^6*t^8.966*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
57438 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ | 1.4541 | 1.6441 | 0.8844 | [M:[1.3297, 0.9816], q:[0.5158, 0.479], qb:[0.5026, 0.4916], phi:[0.3352]] | t^2.912 + 2*t^2.945 + t^3.016 + t^3.022 + t^3.917 + t^3.95 + t^3.989 + t^4.028 + t^4.061 + t^4.923 + t^4.956 + t^5.033 + t^5.066 + t^5.427 + t^5.463 + t^5.496 + t^5.537 + t^5.824 + 2*t^5.857 + 2*t^5.89 + t^5.928 + t^5.934 + 2*t^5.961 + t^5.967 - 4*t^6. - t^4.005/y - t^5.011/y - t^4.005*y - t^5.011*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47867 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ | 1.4741 | 1.6835 | 0.8756 | [q:[0.4973, 0.4973], qb:[0.5027, 0.4919], phi:[0.3351]] | t^2.011 + 2*t^2.967 + 2*t^3. + t^3.016 + 2*t^3.973 + 2*t^4.005 + t^4.022 + 4*t^4.978 + 4*t^5.011 + t^5.027 + t^5.465 + 2*t^5.481 + t^5.497 + 3*t^5.935 + 3*t^5.967 + 4*t^5.984 - 3*t^6. - t^4.005/y - t^5.011/y - t^4.005*y - t^5.011*y | detail |