Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56803 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{3}M_{6}$ + ${ }M_{7}q_{2}\tilde{q}_{1}$ + ${ }M_{8}\phi_{1}\tilde{q}_{1}^{2}$ 0.6547 0.8239 0.7947 [X:[1.6119], M:[0.3881, 0.7166, 1.1643, 0.8357, 1.2238, 0.8357, 0.7587, 0.6991], q:[0.827, 0.7849], qb:[0.4564, 0.3793], phi:[0.3881]] [X:[[0, 1]], M:[[0, -1], [0, -7], [0, -3], [0, 3], [0, 2], [0, 3], [2, 0], [2, -5]], q:[[1, 4], [-1, -3]], qb:[[-1, 3], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{8}$, ${ }M_{2}$, ${ }M_{7}$, ${ }M_{4}$, ${ }M_{6}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{5}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{8}^{2}$, ${ }M_{2}M_{8}$, ${ }M_{2}^{2}$, ${ }M_{7}M_{8}$, ${ }M_{2}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{6}M_{8}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{7}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{8}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{8}q_{1}\tilde{q}_{2}$, ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}M_{8}$, ${ }M_{8}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{2}^{2}$ ${}$ -3 t^2.097 + t^2.15 + t^2.276 + 2*t^2.507 + t^3.44 + t^3.619 + 2*t^3.671 + t^4.195 + t^4.247 + t^4.3 + t^4.373 + t^4.426 + t^4.552 + 2*t^4.604 + 2*t^4.657 + 2*t^4.783 + t^4.836 + 3*t^5.014 + t^5.537 + t^5.59 + 2*t^5.716 + 2*t^5.769 + t^5.821 + t^5.895 + 3*t^5.947 - 3*t^6. - t^6.053 + 2*t^6.126 + 3*t^6.179 - t^6.231 + t^6.292 + t^6.344 + t^6.397 + t^6.449 + t^6.47 + t^6.523 + t^6.576 + t^6.649 + 3*t^6.702 + 2*t^6.754 + 2*t^6.807 + t^6.828 + 3*t^6.88 + 2*t^6.933 + 3*t^7.059 + 4*t^7.112 - t^7.217 + t^7.238 + 4*t^7.29 + t^7.343 - 2*t^7.396 + 3*t^7.522 - t^7.574 + t^7.635 + t^7.687 + t^7.74 + 2*t^7.813 + 3*t^7.866 + t^7.919 + t^7.971 + 2*t^7.992 + 3*t^8.045 - t^8.097 - 4*t^8.15 + t^8.171 - t^8.202 + 5*t^8.223 - t^8.329 - t^8.381 + t^8.389 + 2*t^8.402 + t^8.442 + 4*t^8.455 + t^8.494 - 7*t^8.507 + t^8.547 - 3*t^8.56 + t^8.568 + t^8.599 + t^8.62 + 3*t^8.633 + t^8.673 + 3*t^8.686 + t^8.725 - 3*t^8.738 + t^8.746 + 3*t^8.799 + 3*t^8.852 + 2*t^8.904 + t^8.925 + 2*t^8.957 + 4*t^8.978 - t^4.164/y - t^6.262/y - t^6.314/y - t^6.44/y - t^6.671/y + t^7.247/y + t^7.373/y + t^7.426/y + (2*t^7.604)/y + (3*t^7.657)/y + (2*t^7.783)/y + t^7.888/y + (2*t^8.014)/y + t^8.067/y - t^8.359/y - t^8.411/y - t^8.464/y + t^8.716/y + (2*t^8.769)/y + t^8.821/y + t^8.895/y + (3*t^8.947)/y - t^4.164*y - t^6.262*y - t^6.314*y - t^6.44*y - t^6.671*y + t^7.247*y + t^7.373*y + t^7.426*y + 2*t^7.604*y + 3*t^7.657*y + 2*t^7.783*y + t^7.888*y + 2*t^8.014*y + t^8.067*y - t^8.359*y - t^8.411*y - t^8.464*y + t^8.716*y + 2*t^8.769*y + t^8.821*y + t^8.895*y + 3*t^8.947*y (g1^2*t^2.097)/g2^5 + t^2.15/g2^7 + g1^2*t^2.276 + 2*g2^3*t^2.507 + (g1^2*t^3.44)/g2 + g1^2*g2^4*t^3.619 + 2*g2^2*t^3.671 + (g1^4*t^4.195)/g2^10 + (g1^2*t^4.247)/g2^12 + t^4.3/g2^14 + (g1^4*t^4.373)/g2^5 + (g1^2*t^4.426)/g2^7 + g1^4*t^4.552 + (2*g1^2*t^4.604)/g2^2 + (2*t^4.657)/g2^4 + 2*g1^2*g2^3*t^4.783 + g2*t^4.836 + 3*g2^6*t^5.014 + (g1^4*t^5.537)/g2^6 + (g1^2*t^5.59)/g2^8 + (2*g1^4*t^5.716)/g2 + (2*g1^2*t^5.769)/g2^3 + t^5.821/g2^5 + g1^4*g2^4*t^5.895 + 3*g1^2*g2^2*t^5.947 - 3*t^6. - t^6.053/(g1^2*g2^2) + 2*g1^2*g2^7*t^6.126 + 3*g2^5*t^6.179 - (g2^3*t^6.231)/g1^2 + (g1^6*t^6.292)/g2^15 + (g1^4*t^6.344)/g2^17 + (g1^2*t^6.397)/g2^19 + t^6.449/g2^21 + (g1^6*t^6.47)/g2^10 + (g1^4*t^6.523)/g2^12 + (g1^2*t^6.576)/g2^14 + (g1^6*t^6.649)/g2^5 + (3*g1^4*t^6.702)/g2^7 + (2*g1^2*t^6.754)/g2^9 + (2*t^6.807)/g2^11 + g1^6*t^6.828 + (3*g1^4*t^6.88)/g2^2 + (2*g1^2*t^6.933)/g2^4 + 3*g1^4*g2^3*t^7.059 + 4*g1^2*g2*t^7.112 - t^7.217/(g1^2*g2^3) + g1^4*g2^8*t^7.238 + 4*g1^2*g2^6*t^7.29 + g2^4*t^7.343 - (2*g2^2*t^7.396)/g1^2 + 3*g2^9*t^7.522 - (g2^7*t^7.574)/g1^2 + (g1^6*t^7.635)/g2^11 + (g1^4*t^7.687)/g2^13 + (g1^2*t^7.74)/g2^15 + (2*g1^6*t^7.813)/g2^6 + (3*g1^4*t^7.866)/g2^8 + (g1^2*t^7.919)/g2^10 + t^7.971/g2^12 + (2*g1^6*t^7.992)/g2 + (3*g1^4*t^8.045)/g2^3 - (g1^2*t^8.097)/g2^5 - (4*t^8.15)/g2^7 + g1^6*g2^4*t^8.171 - t^8.202/(g1^2*g2^9) + 5*g1^4*g2^2*t^8.223 - t^8.329/g2^2 - t^8.381/(g1^2*g2^4) + (g1^8*t^8.389)/g2^20 + 2*g1^4*g2^7*t^8.402 + (g1^6*t^8.442)/g2^22 + 4*g1^2*g2^5*t^8.455 + (g1^4*t^8.494)/g2^24 - 7*g2^3*t^8.507 + (g1^2*t^8.547)/g2^26 - (3*g2*t^8.56)/g1^2 + (g1^8*t^8.568)/g2^15 + t^8.599/g2^28 + (g1^6*t^8.62)/g2^17 + 3*g1^2*g2^10*t^8.633 + (g1^4*t^8.673)/g2^19 + 3*g2^8*t^8.686 + (g1^2*t^8.725)/g2^21 - (3*g2^6*t^8.738)/g1^2 + (g1^8*t^8.746)/g2^10 + (3*g1^6*t^8.799)/g2^12 + (3*g1^4*t^8.852)/g2^14 + (2*g1^2*t^8.904)/g2^16 + (g1^8*t^8.925)/g2^5 + (2*t^8.957)/g2^18 + (4*g1^6*t^8.978)/g2^7 - t^4.164/(g2*y) - (g1^2*t^6.262)/(g2^6*y) - t^6.314/(g2^8*y) - (g1^2*t^6.44)/(g2*y) - (g2^2*t^6.671)/y + (g1^2*t^7.247)/(g2^12*y) + (g1^4*t^7.373)/(g2^5*y) + (g1^2*t^7.426)/(g2^7*y) + (2*g1^2*t^7.604)/(g2^2*y) + (3*t^7.657)/(g2^4*y) + (2*g1^2*g2^3*t^7.783)/y + t^7.888/(g1^2*g2*y) + (2*g2^6*t^8.014)/y + (g2^4*t^8.067)/(g1^2*y) - (g1^4*t^8.359)/(g2^11*y) - (g1^2*t^8.411)/(g2^13*y) - t^8.464/(g2^15*y) + (g1^4*t^8.716)/(g2*y) + (2*g1^2*t^8.769)/(g2^3*y) + t^8.821/(g2^5*y) + (g1^4*g2^4*t^8.895)/y + (3*g1^2*g2^2*t^8.947)/y - (t^4.164*y)/g2 - (g1^2*t^6.262*y)/g2^6 - (t^6.314*y)/g2^8 - (g1^2*t^6.44*y)/g2 - g2^2*t^6.671*y + (g1^2*t^7.247*y)/g2^12 + (g1^4*t^7.373*y)/g2^5 + (g1^2*t^7.426*y)/g2^7 + (2*g1^2*t^7.604*y)/g2^2 + (3*t^7.657*y)/g2^4 + 2*g1^2*g2^3*t^7.783*y + (t^7.888*y)/(g1^2*g2) + 2*g2^6*t^8.014*y + (g2^4*t^8.067*y)/g1^2 - (g1^4*t^8.359*y)/g2^11 - (g1^2*t^8.411*y)/g2^13 - (t^8.464*y)/g2^15 + (g1^4*t^8.716*y)/g2 + (2*g1^2*t^8.769*y)/g2^3 + (t^8.821*y)/g2^5 + g1^4*g2^4*t^8.895*y + 3*g1^2*g2^2*t^8.947*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55142 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{3}M_{6}$ + ${ }M_{7}q_{2}\tilde{q}_{1}$ 0.6343 0.7843 0.8087 [X:[1.6105], M:[0.3895, 0.7262, 1.1684, 0.8316, 1.2211, 0.8316, 0.7684], q:[0.8264, 0.7842], qb:[0.4474, 0.3842], phi:[0.3895]] t^2.179 + t^2.305 + 2*t^2.495 + t^3.474 + t^3.632 + 2*t^3.663 + t^3.853 + t^4.357 + t^4.484 + t^4.61 + 2*t^4.673 + 2*t^4.8 + t^4.832 + 3*t^4.99 + t^5.652 + t^5.779 + t^5.842 + t^5.937 + 3*t^5.968 - 3*t^6. - t^4.168/y - t^4.168*y detail