Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3471 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_3M_5$ + $ M_3M_6$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_7q_2\tilde{q}_1$ + $ M_8\phi_1\tilde{q}_1^2$ | 0.6547 | 0.8239 | 0.7947 | [X:[1.6119], M:[0.3881, 1.2238, 1.1643, 0.7166, 0.8357, 0.8357, 0.7587, 0.6991], q:[0.827, 0.7849], qb:[0.4564, 0.3793], phi:[0.3881]] | [X:[[0, 1]], M:[[0, -1], [0, 2], [0, -3], [0, -7], [0, 3], [0, 3], [2, 0], [2, -5]], q:[[1, 4], [-1, -3]], qb:[[-1, 3], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_8$, $ M_4$, $ M_7$, $ M_5$, $ M_6$, $ \phi_1\tilde{q}_2^2$, $ q_1\tilde{q}_2$, $ M_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_8^2$, $ M_4M_8$, $ M_4^2$, $ M_7M_8$, $ M_4M_7$, $ M_7^2$, $ M_5M_8$, $ M_6M_8$, $ M_4M_5$, $ M_4M_6$, $ \phi_1q_2\tilde{q}_2$, $ M_5M_7$, $ M_6M_7$, $ \phi_1q_1\tilde{q}_2$, $ X_1$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ M_8\phi_1\tilde{q}_2^2$, $ M_4\phi_1\tilde{q}_2^2$, $ M_8q_1\tilde{q}_2$, $ M_7\phi_1\tilde{q}_2^2$, $ M_2M_8$, $ M_4q_1\tilde{q}_2$, $ M_8\phi_1\tilde{q}_1\tilde{q}_2$, $ M_2M_4$, $ M_4\phi_1\tilde{q}_1\tilde{q}_2$, $ M_7q_1\tilde{q}_2$, $ M_2M_7$, $ M_7\phi_1\tilde{q}_1\tilde{q}_2$, $ M_5\phi_1\tilde{q}_2^2$, $ M_6\phi_1\tilde{q}_2^2$ | . | -3 | t^2.1 + t^2.15 + t^2.28 + 2*t^2.51 + t^3.44 + t^3.62 + 2*t^3.67 + t^4.19 + t^4.25 + t^4.3 + t^4.37 + t^4.43 + t^4.55 + 2*t^4.6 + 2*t^4.66 + 2*t^4.78 + t^4.84 + 3*t^5.01 + t^5.54 + t^5.59 + 2*t^5.72 + 2*t^5.77 + t^5.82 + t^5.89 + 3*t^5.95 - 3*t^6. - t^6.05 + 2*t^6.13 + 3*t^6.18 - t^6.23 + t^6.29 + t^6.34 + t^6.4 + t^6.45 + t^6.47 + t^6.52 + t^6.58 + t^6.65 + 3*t^6.7 + 2*t^6.75 + 2*t^6.81 + t^6.83 + 3*t^6.88 + 2*t^6.93 + 3*t^7.06 + 4*t^7.11 - t^7.22 + t^7.24 + 4*t^7.29 + t^7.34 - 2*t^7.4 + 3*t^7.52 - t^7.57 + t^7.63 + t^7.69 + t^7.74 + 2*t^7.81 + 3*t^7.87 + t^7.92 + t^7.97 + 2*t^7.99 + 3*t^8.04 - t^8.1 - 4*t^8.15 + t^8.17 - t^8.2 + 5*t^8.22 - t^8.33 - t^8.38 + t^8.39 + 2*t^8.4 + t^8.44 + 4*t^8.45 + t^8.49 - 7*t^8.51 + t^8.55 - 3*t^8.56 + t^8.57 + t^8.6 + t^8.62 + 3*t^8.63 + t^8.67 + 3*t^8.69 + t^8.73 - 3*t^8.74 + t^8.75 + 3*t^8.8 + 3*t^8.85 + 2*t^8.9 + t^8.93 + 2*t^8.96 + 4*t^8.98 - t^4.16/y - t^6.26/y - t^6.31/y - t^6.44/y - t^6.67/y + t^7.25/y + t^7.37/y + t^7.43/y + (2*t^7.6)/y + (3*t^7.66)/y + (2*t^7.78)/y + t^7.89/y + (2*t^8.01)/y + t^8.07/y - t^8.36/y - t^8.41/y - t^8.46/y + t^8.72/y + (2*t^8.77)/y + t^8.82/y + t^8.89/y + (3*t^8.95)/y - t^4.16*y - t^6.26*y - t^6.31*y - t^6.44*y - t^6.67*y + t^7.25*y + t^7.37*y + t^7.43*y + 2*t^7.6*y + 3*t^7.66*y + 2*t^7.78*y + t^7.89*y + 2*t^8.01*y + t^8.07*y - t^8.36*y - t^8.41*y - t^8.46*y + t^8.72*y + 2*t^8.77*y + t^8.82*y + t^8.89*y + 3*t^8.95*y | (g1^2*t^2.1)/g2^5 + t^2.15/g2^7 + g1^2*t^2.28 + 2*g2^3*t^2.51 + (g1^2*t^3.44)/g2 + g1^2*g2^4*t^3.62 + 2*g2^2*t^3.67 + (g1^4*t^4.19)/g2^10 + (g1^2*t^4.25)/g2^12 + t^4.3/g2^14 + (g1^4*t^4.37)/g2^5 + (g1^2*t^4.43)/g2^7 + g1^4*t^4.55 + (2*g1^2*t^4.6)/g2^2 + (2*t^4.66)/g2^4 + 2*g1^2*g2^3*t^4.78 + g2*t^4.84 + 3*g2^6*t^5.01 + (g1^4*t^5.54)/g2^6 + (g1^2*t^5.59)/g2^8 + (2*g1^4*t^5.72)/g2 + (2*g1^2*t^5.77)/g2^3 + t^5.82/g2^5 + g1^4*g2^4*t^5.89 + 3*g1^2*g2^2*t^5.95 - 3*t^6. - t^6.05/(g1^2*g2^2) + 2*g1^2*g2^7*t^6.13 + 3*g2^5*t^6.18 - (g2^3*t^6.23)/g1^2 + (g1^6*t^6.29)/g2^15 + (g1^4*t^6.34)/g2^17 + (g1^2*t^6.4)/g2^19 + t^6.45/g2^21 + (g1^6*t^6.47)/g2^10 + (g1^4*t^6.52)/g2^12 + (g1^2*t^6.58)/g2^14 + (g1^6*t^6.65)/g2^5 + (3*g1^4*t^6.7)/g2^7 + (2*g1^2*t^6.75)/g2^9 + (2*t^6.81)/g2^11 + g1^6*t^6.83 + (3*g1^4*t^6.88)/g2^2 + (2*g1^2*t^6.93)/g2^4 + 3*g1^4*g2^3*t^7.06 + 4*g1^2*g2*t^7.11 - t^7.22/(g1^2*g2^3) + g1^4*g2^8*t^7.24 + 4*g1^2*g2^6*t^7.29 + g2^4*t^7.34 - (2*g2^2*t^7.4)/g1^2 + 3*g2^9*t^7.52 - (g2^7*t^7.57)/g1^2 + (g1^6*t^7.63)/g2^11 + (g1^4*t^7.69)/g2^13 + (g1^2*t^7.74)/g2^15 + (2*g1^6*t^7.81)/g2^6 + (3*g1^4*t^7.87)/g2^8 + (g1^2*t^7.92)/g2^10 + t^7.97/g2^12 + (2*g1^6*t^7.99)/g2 + (3*g1^4*t^8.04)/g2^3 - (g1^2*t^8.1)/g2^5 - (4*t^8.15)/g2^7 + g1^6*g2^4*t^8.17 - t^8.2/(g1^2*g2^9) + 5*g1^4*g2^2*t^8.22 - t^8.33/g2^2 - t^8.38/(g1^2*g2^4) + (g1^8*t^8.39)/g2^20 + 2*g1^4*g2^7*t^8.4 + (g1^6*t^8.44)/g2^22 + 4*g1^2*g2^5*t^8.45 + (g1^4*t^8.49)/g2^24 - 7*g2^3*t^8.51 + (g1^2*t^8.55)/g2^26 - (3*g2*t^8.56)/g1^2 + (g1^8*t^8.57)/g2^15 + t^8.6/g2^28 + (g1^6*t^8.62)/g2^17 + 3*g1^2*g2^10*t^8.63 + (g1^4*t^8.67)/g2^19 + 3*g2^8*t^8.69 + (g1^2*t^8.73)/g2^21 - (3*g2^6*t^8.74)/g1^2 + (g1^8*t^8.75)/g2^10 + (3*g1^6*t^8.8)/g2^12 + (3*g1^4*t^8.85)/g2^14 + (2*g1^2*t^8.9)/g2^16 + (g1^8*t^8.93)/g2^5 + (2*t^8.96)/g2^18 + (4*g1^6*t^8.98)/g2^7 - t^4.16/(g2*y) - (g1^2*t^6.26)/(g2^6*y) - t^6.31/(g2^8*y) - (g1^2*t^6.44)/(g2*y) - (g2^2*t^6.67)/y + (g1^2*t^7.25)/(g2^12*y) + (g1^4*t^7.37)/(g2^5*y) + (g1^2*t^7.43)/(g2^7*y) + (2*g1^2*t^7.6)/(g2^2*y) + (3*t^7.66)/(g2^4*y) + (2*g1^2*g2^3*t^7.78)/y + t^7.89/(g1^2*g2*y) + (2*g2^6*t^8.01)/y + (g2^4*t^8.07)/(g1^2*y) - (g1^4*t^8.36)/(g2^11*y) - (g1^2*t^8.41)/(g2^13*y) - t^8.46/(g2^15*y) + (g1^4*t^8.72)/(g2*y) + (2*g1^2*t^8.77)/(g2^3*y) + t^8.82/(g2^5*y) + (g1^4*g2^4*t^8.89)/y + (3*g1^2*g2^2*t^8.95)/y - (t^4.16*y)/g2 - (g1^2*t^6.26*y)/g2^6 - (t^6.31*y)/g2^8 - (g1^2*t^6.44*y)/g2 - g2^2*t^6.67*y + (g1^2*t^7.25*y)/g2^12 + (g1^4*t^7.37*y)/g2^5 + (g1^2*t^7.43*y)/g2^7 + (2*g1^2*t^7.6*y)/g2^2 + (3*t^7.66*y)/g2^4 + 2*g1^2*g2^3*t^7.78*y + (t^7.89*y)/(g1^2*g2) + 2*g2^6*t^8.01*y + (g2^4*t^8.07*y)/g1^2 - (g1^4*t^8.36*y)/g2^11 - (g1^2*t^8.41*y)/g2^13 - (t^8.46*y)/g2^15 + (g1^4*t^8.72*y)/g2 + (2*g1^2*t^8.77*y)/g2^3 + (t^8.82*y)/g2^5 + g1^4*g2^4*t^8.89*y + 3*g1^2*g2^2*t^8.95*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2894 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_3M_5$ + $ M_3M_6$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_7q_2\tilde{q}_1$ | 0.6343 | 0.7843 | 0.8087 | [X:[1.6105], M:[0.3895, 1.2211, 1.1684, 0.7262, 0.8316, 0.8316, 0.7684], q:[0.8264, 0.7842], qb:[0.4474, 0.3842], phi:[0.3895]] | t^2.18 + t^2.31 + 2*t^2.49 + t^3.47 + t^3.63 + 2*t^3.66 + t^3.85 + t^4.36 + t^4.48 + t^4.61 + 2*t^4.67 + 2*t^4.8 + t^4.83 + 3*t^4.99 + t^5.65 + t^5.78 + t^5.84 + t^5.94 + 3*t^5.97 - 3*t^6. - t^4.17/y - t^4.17*y | detail |