Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56775 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{7}$ + ${ }M_{8}\phi_{1}\tilde{q}_{1}^{2}$ | 0.7508 | 0.9489 | 0.7912 | [M:[0.8453, 1.0774, 1.0, 0.7679, 0.9374, 0.9079, 0.9226, 0.6787], q:[0.4926, 0.6621], qb:[0.43, 0.57], phi:[0.4613]] | [M:[[-4, -4], [2, 2], [0, 0], [-6, -6], [2, -10], [-6, 6], [-2, -2], [1, 13]], q:[[-2, 4], [6, 0]], qb:[[0, -6], [0, 6]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{8}$, ${ }M_{4}$, ${ }M_{1}$, ${ }M_{6}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }M_{3}$, ${ }M_{8}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{8}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{8}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{6}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{5}M_{8}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}M_{6}$, ${ }M_{3}M_{8}$, ${ }M_{1}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{7}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{5}M_{6}$, ${ }M_{7}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{5}M_{7}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{3}\phi_{1}^{2}$ | ${}$ | -3 | t^2.036 + t^2.304 + t^2.536 + t^2.724 + 2*t^2.768 + t^2.812 + t^3. + t^4.072 + t^4.152 + 2*t^4.34 + t^4.384 + 2*t^4.572 + t^4.607 + t^4.66 + t^4.76 + 3*t^4.804 + t^4.84 + 2*t^4.848 + t^5.027 + t^5.036 + 3*t^5.072 + t^5.08 + t^5.116 + t^5.259 + 2*t^5.304 + t^5.348 + t^5.357 + t^5.447 + t^5.492 + 5*t^5.536 + t^5.58 + t^5.624 + t^5.768 - 3*t^6. + t^6.108 - t^6.232 - t^6.276 + 2*t^6.376 + t^6.456 - t^6.464 - t^6.508 + 2*t^6.608 + 2*t^6.643 + t^6.688 + t^6.796 + 3*t^6.84 + 3*t^6.876 + 2*t^6.884 + t^6.911 + 3*t^6.92 + t^6.964 + 2*t^7.063 + t^7.072 + 7*t^7.108 + t^7.116 + t^7.143 + 4*t^7.152 + 2*t^7.295 + t^7.331 + 5*t^7.34 + 3*t^7.375 + 2*t^7.384 + t^7.393 + t^7.42 + t^7.428 + t^7.472 + t^7.483 + 2*t^7.528 + t^7.563 + 6*t^7.572 + 3*t^7.607 + 2*t^7.616 + t^7.652 + 2*t^7.66 + t^7.751 + 2*t^7.795 + t^7.804 + 6*t^7.84 + 2*t^7.884 + t^7.928 + t^7.983 + t^8.027 - 5*t^8.036 + 4*t^8.072 - t^8.08 + t^8.124 + t^8.144 + t^8.16 + t^8.169 + t^8.171 + t^8.215 + 2*t^8.259 - 2*t^8.268 + 2*t^8.304 - 2*t^8.312 + 2*t^8.348 + t^8.392 + 2*t^8.412 + t^8.437 - t^8.5 - 3*t^8.536 - 2*t^8.544 - 2*t^8.58 - t^8.589 + 2*t^8.644 + 3*t^8.679 - 3*t^8.724 + t^8.759 - 8*t^8.768 - 5*t^8.812 + t^8.832 + 3*t^8.876 + 3*t^8.911 + 2*t^8.92 + 2*t^8.947 + t^8.991 - t^4.384/y - t^6.42/y - t^6.688/y - t^6.92/y - t^7.108/y - t^7.152/y - t^7.196/y + t^7.34/y + (2*t^7.572)/y + t^7.616/y + t^7.66/y + t^7.76/y + (2*t^7.804)/y + t^7.84/y + (2*t^7.848)/y + t^8.027/y + t^8.036/y + (2*t^8.072)/y + t^8.08/y + t^8.116/y + t^8.259/y + (3*t^8.304)/y + (2*t^8.348)/y - t^8.456/y + (2*t^8.492)/y + (3*t^8.536)/y + (2*t^8.58)/y + (2*t^8.768)/y + t^8.812/y - t^8.956/y - t^8.991/y - t^4.384*y - t^6.42*y - t^6.688*y - t^6.92*y - t^7.108*y - t^7.152*y - t^7.196*y + t^7.34*y + 2*t^7.572*y + t^7.616*y + t^7.66*y + t^7.76*y + 2*t^7.804*y + t^7.84*y + 2*t^7.848*y + t^8.027*y + t^8.036*y + 2*t^8.072*y + t^8.08*y + t^8.116*y + t^8.259*y + 3*t^8.304*y + 2*t^8.348*y - t^8.456*y + 2*t^8.492*y + 3*t^8.536*y + 2*t^8.58*y + 2*t^8.768*y + t^8.812*y - t^8.956*y - t^8.991*y | g1*g2^13*t^2.036 + t^2.304/(g1^6*g2^6) + t^2.536/(g1^4*g2^4) + (g2^6*t^2.724)/g1^6 + (2*t^2.768)/(g1^2*g2^2) + (g1^2*t^2.812)/g2^10 + t^3. + g1^2*g2^26*t^4.072 + t^4.152/(g1^3*g2^3) + (2*g2^7*t^4.34)/g1^5 + t^4.384/(g1*g2) + (2*g2^9*t^4.572)/g1^3 + t^4.607/(g1^12*g2^12) + (g1^5*t^4.66)/g2^7 + (g2^19*t^4.76)/g1^5 + (3*g2^11*t^4.804)/g1 + t^4.84/(g1^10*g2^10) + 2*g1^3*g2^3*t^4.848 + t^5.027/g1^12 + g1*g2^13*t^5.036 + (3*t^5.072)/(g1^8*g2^8) + g1^5*g2^5*t^5.08 + t^5.116/(g1^4*g2^16) + (g2^2*t^5.259)/g1^10 + (2*t^5.304)/(g1^6*g2^6) + t^5.348/(g1^2*g2^14) + (g1^11*t^5.357)/g2 + (g2^12*t^5.447)/g1^12 + (g2^4*t^5.492)/g1^8 + (5*t^5.536)/(g1^4*g2^4) + t^5.58/g2^12 + (g1^4*t^5.624)/g2^20 + t^5.768/(g1^2*g2^2) - 3*t^6. + g1^3*g2^39*t^6.108 - g1^2*g2^2*t^6.232 - (g1^6*t^6.276)/g2^6 + (2*g2^20*t^6.376)/g1^4 + t^6.456/(g1^9*g2^9) - g1^4*g2^4*t^6.464 - (g1^8*t^6.508)/g2^4 + (2*g2^22*t^6.608)/g1^2 + (2*g2*t^6.643)/g1^11 + t^6.688/(g1^7*g2^7) + (g2^32*t^6.796)/g1^4 + 3*g2^24*t^6.84 + (3*g2^3*t^6.876)/g1^9 + 2*g1^4*g2^16*t^6.884 + t^6.911/(g1^18*g2^18) + (3*t^6.92)/(g1^5*g2^5) + t^6.964/(g1*g2^13) + (2*g2^13*t^7.063)/g1^11 + g1^2*g2^26*t^7.072 + (7*g2^5*t^7.108)/g1^7 + g1^6*g2^18*t^7.116 + t^7.143/(g1^16*g2^16) + (4*t^7.152)/(g1^3*g2^3) + (2*g2^15*t^7.295)/g1^9 + t^7.331/(g1^18*g2^6) + (5*g2^7*t^7.34)/g1^5 + (3*t^7.375)/(g1^14*g2^14) + (2*t^7.384)/(g1*g2) + g1^12*g2^12*t^7.393 + t^7.42/(g1^10*g2^22) + (g1^3*t^7.428)/g2^9 + (g1^7*t^7.472)/g2^17 + (g2^25*t^7.483)/g1^11 + (2*g2^17*t^7.528)/g1^7 + t^7.563/(g1^16*g2^4) + (6*g2^9*t^7.572)/g1^3 + (3*t^7.607)/(g1^12*g2^12) + 2*g1*g2*t^7.616 + t^7.652/(g1^8*g2^20) + (2*g1^5*t^7.66)/g2^7 + (g2^6*t^7.751)/g1^18 + (2*t^7.795)/(g1^14*g2^2) + (g2^11*t^7.804)/g1 + (6*t^7.84)/(g1^10*g2^10) + (2*t^7.884)/(g1^6*g2^18) + t^7.928/(g1^2*g2^26) + (g2^8*t^7.983)/g1^16 + t^8.027/g1^12 - 5*g1*g2^13*t^8.036 + (4*t^8.072)/(g1^8*g2^8) - g1^5*g2^5*t^8.08 + (g1^9*t^8.124)/g2^3 + g1^4*g2^52*t^8.144 + t^8.16/g2^24 + (g1^13*t^8.169)/g2^11 + (g2^18*t^8.171)/g1^18 + (g2^10*t^8.215)/g1^14 + (2*g2^2*t^8.259)/g1^10 - 2*g1^3*g2^15*t^8.268 + (2*t^8.304)/(g1^6*g2^6) - 2*g1^7*g2^7*t^8.312 + (2*t^8.348)/(g1^2*g2^14) + (g1^2*t^8.392)/g2^22 + (2*g2^33*t^8.412)/g1^3 + (g1^6*t^8.437)/g2^30 - g1^5*g2^17*t^8.5 - (3*t^8.536)/(g1^4*g2^4) - 2*g1^9*g2^9*t^8.544 - (2*t^8.58)/g2^12 - g1^13*g2*t^8.589 + (2*g2^35*t^8.644)/g1 + (3*g2^14*t^8.679)/g1^10 - (3*g2^6*t^8.724)/g1^6 + t^8.759/(g1^15*g2^15) - (8*t^8.768)/(g1^2*g2^2) - (5*g1^2*t^8.812)/g2^10 + (g2^45*t^8.832)/g1^3 + 3*g1*g2^37*t^8.876 + (3*g2^16*t^8.911)/g1^8 + 2*g1^5*g2^29*t^8.92 + (2*t^8.947)/(g1^17*g2^5) + t^8.991/(g1^13*g2^13) - t^4.384/(g1*g2*y) - (g2^12*t^6.42)/y - t^6.688/(g1^7*g2^7*y) - t^6.92/(g1^5*g2^5*y) - (g2^5*t^7.108)/(g1^7*y) - t^7.152/(g1^3*g2^3*y) - (g1*t^7.196)/(g2^11*y) + (g2^7*t^7.34)/(g1^5*y) + (2*g2^9*t^7.572)/(g1^3*y) + (g1*g2*t^7.616)/y + (g1^5*t^7.66)/(g2^7*y) + (g2^19*t^7.76)/(g1^5*y) + (2*g2^11*t^7.804)/(g1*y) + t^7.84/(g1^10*g2^10*y) + (2*g1^3*g2^3*t^7.848)/y + t^8.027/(g1^12*y) + (g1*g2^13*t^8.036)/y + (2*t^8.072)/(g1^8*g2^8*y) + (g1^5*g2^5*t^8.08)/y + t^8.116/(g1^4*g2^16*y) + (g2^2*t^8.259)/(g1^10*y) + (3*t^8.304)/(g1^6*g2^6*y) + (2*t^8.348)/(g1^2*g2^14*y) - (g1*g2^25*t^8.456)/y + (2*g2^4*t^8.492)/(g1^8*y) + (3*t^8.536)/(g1^4*g2^4*y) + (2*t^8.58)/(g2^12*y) + (2*t^8.768)/(g1^2*g2^2*y) + (g1^2*t^8.812)/(g2^10*y) - (g2^8*t^8.956)/(g1^4*y) - t^8.991/(g1^13*g2^13*y) - (t^4.384*y)/(g1*g2) - g2^12*t^6.42*y - (t^6.688*y)/(g1^7*g2^7) - (t^6.92*y)/(g1^5*g2^5) - (g2^5*t^7.108*y)/g1^7 - (t^7.152*y)/(g1^3*g2^3) - (g1*t^7.196*y)/g2^11 + (g2^7*t^7.34*y)/g1^5 + (2*g2^9*t^7.572*y)/g1^3 + g1*g2*t^7.616*y + (g1^5*t^7.66*y)/g2^7 + (g2^19*t^7.76*y)/g1^5 + (2*g2^11*t^7.804*y)/g1 + (t^7.84*y)/(g1^10*g2^10) + 2*g1^3*g2^3*t^7.848*y + (t^8.027*y)/g1^12 + g1*g2^13*t^8.036*y + (2*t^8.072*y)/(g1^8*g2^8) + g1^5*g2^5*t^8.08*y + (t^8.116*y)/(g1^4*g2^16) + (g2^2*t^8.259*y)/g1^10 + (3*t^8.304*y)/(g1^6*g2^6) + (2*t^8.348*y)/(g1^2*g2^14) - g1*g2^25*t^8.456*y + (2*g2^4*t^8.492*y)/g1^8 + (3*t^8.536*y)/(g1^4*g2^4) + (2*t^8.58*y)/g2^12 + (2*t^8.768*y)/(g1^2*g2^2) + (g1^2*t^8.812*y)/g2^10 - (g2^8*t^8.956*y)/g1^4 - (t^8.991*y)/(g1^13*g2^13) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55106 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{7}$ | 0.73 | 0.9083 | 0.8037 | [M:[0.8431, 1.0785, 1.0, 0.7646, 0.933, 0.9101, 0.9215], q:[0.4943, 0.6626], qb:[0.4272, 0.5728], phi:[0.4608]] | t^2.294 + t^2.529 + t^2.73 + 2*t^2.765 + t^2.799 + t^3. + t^3.946 + t^4.147 + t^4.348 + t^4.382 + t^4.583 + t^4.588 + t^4.652 + t^4.819 + t^4.823 + t^4.853 + t^5.024 + 3*t^5.058 + t^5.088 + t^5.093 + t^5.26 + 2*t^5.294 + t^5.328 + t^5.358 + t^5.461 + t^5.495 + 5*t^5.529 + t^5.563 + t^5.598 + t^5.765 - 3*t^6. - t^4.382/y - t^4.382*y | detail |