Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2524 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{8}$ 0.7508 0.9489 0.7912 [M:[1.0774, 0.7679, 0.9374, 0.9079, 1.0, 0.8453, 0.6787, 0.9226], q:[0.4926, 0.43], qb:[0.57, 0.6621], phi:[0.4613]] [M:[[2, 2], [-6, -6], [-10, 2], [6, -6], [0, 0], [-4, -4], [13, 1], [-2, -2]], q:[[4, -2], [-6, 0]], qb:[[6, 0], [0, 6]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{2}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{5}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}M_{7}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}M_{8}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{3}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{5}M_{7}$, ${ }M_{6}^{2}$, ${ }M_{2}M_{8}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{4}M_{6}$, ${ }M_{2}M_{5}$, ${ }M_{6}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{8}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}M_{8}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{5}M_{8}$, ${ }M_{5}\phi_{1}^{2}$ ${}$ -3 t^2.036 + t^2.304 + t^2.536 + t^2.724 + 2*t^2.768 + t^2.812 + t^3. + t^4.072 + t^4.152 + 2*t^4.34 + t^4.384 + 2*t^4.572 + t^4.607 + t^4.66 + t^4.76 + 3*t^4.804 + t^4.84 + 2*t^4.848 + t^5.027 + t^5.036 + 3*t^5.072 + t^5.08 + t^5.116 + t^5.259 + 2*t^5.304 + t^5.348 + t^5.357 + t^5.447 + t^5.492 + 5*t^5.536 + t^5.58 + t^5.624 + t^5.768 - 3*t^6. + t^6.108 - t^6.232 - t^6.276 + 2*t^6.376 + t^6.456 - t^6.464 - t^6.508 + 2*t^6.608 + 2*t^6.643 + t^6.688 + t^6.796 + 3*t^6.84 + 3*t^6.876 + 2*t^6.884 + t^6.911 + 3*t^6.92 + t^6.964 + 2*t^7.063 + t^7.072 + 7*t^7.108 + t^7.116 + t^7.143 + 4*t^7.152 + 2*t^7.295 + t^7.331 + 5*t^7.34 + 3*t^7.375 + 2*t^7.384 + t^7.393 + t^7.42 + t^7.428 + t^7.472 + t^7.483 + 2*t^7.528 + t^7.563 + 6*t^7.572 + 3*t^7.607 + 2*t^7.616 + t^7.652 + 2*t^7.66 + t^7.751 + 2*t^7.795 + t^7.804 + 6*t^7.84 + 2*t^7.884 + t^7.928 + t^7.983 + t^8.027 - 5*t^8.036 + 4*t^8.072 - t^8.08 + t^8.124 + t^8.144 + t^8.16 + t^8.169 + t^8.171 + t^8.215 + 2*t^8.259 - 2*t^8.268 + 2*t^8.304 - 2*t^8.312 + 2*t^8.348 + t^8.392 + 2*t^8.412 + t^8.437 - t^8.5 - 3*t^8.536 - 2*t^8.544 - 2*t^8.58 - t^8.589 + 2*t^8.644 + 3*t^8.679 - 3*t^8.724 + t^8.759 - 8*t^8.768 - 5*t^8.812 + t^8.832 + 3*t^8.876 + 3*t^8.911 + 2*t^8.92 + 2*t^8.947 + t^8.991 - t^4.384/y - t^6.42/y - t^6.688/y - t^6.92/y - t^7.108/y - t^7.152/y - t^7.196/y + t^7.34/y + (2*t^7.572)/y + t^7.616/y + t^7.66/y + t^7.76/y + (2*t^7.804)/y + t^7.84/y + (2*t^7.848)/y + t^8.027/y + t^8.036/y + (2*t^8.072)/y + t^8.08/y + t^8.116/y + t^8.259/y + (3*t^8.304)/y + (2*t^8.348)/y - t^8.456/y + (2*t^8.492)/y + (3*t^8.536)/y + (2*t^8.58)/y + (2*t^8.768)/y + t^8.812/y - t^8.956/y - t^8.991/y - t^4.384*y - t^6.42*y - t^6.688*y - t^6.92*y - t^7.108*y - t^7.152*y - t^7.196*y + t^7.34*y + 2*t^7.572*y + t^7.616*y + t^7.66*y + t^7.76*y + 2*t^7.804*y + t^7.84*y + 2*t^7.848*y + t^8.027*y + t^8.036*y + 2*t^8.072*y + t^8.08*y + t^8.116*y + t^8.259*y + 3*t^8.304*y + 2*t^8.348*y - t^8.456*y + 2*t^8.492*y + 3*t^8.536*y + 2*t^8.58*y + 2*t^8.768*y + t^8.812*y - t^8.956*y - t^8.991*y g1^13*g2*t^2.036 + t^2.304/(g1^6*g2^6) + t^2.536/(g1^4*g2^4) + (g1^6*t^2.724)/g2^6 + (2*t^2.768)/(g1^2*g2^2) + (g2^2*t^2.812)/g1^10 + t^3. + g1^26*g2^2*t^4.072 + t^4.152/(g1^3*g2^3) + (2*g1^7*t^4.34)/g2^5 + t^4.384/(g1*g2) + (2*g1^9*t^4.572)/g2^3 + t^4.607/(g1^12*g2^12) + (g2^5*t^4.66)/g1^7 + (g1^19*t^4.76)/g2^5 + (3*g1^11*t^4.804)/g2 + t^4.84/(g1^10*g2^10) + 2*g1^3*g2^3*t^4.848 + t^5.027/g2^12 + g1^13*g2*t^5.036 + (3*t^5.072)/(g1^8*g2^8) + g1^5*g2^5*t^5.08 + t^5.116/(g1^16*g2^4) + (g1^2*t^5.259)/g2^10 + (2*t^5.304)/(g1^6*g2^6) + t^5.348/(g1^14*g2^2) + (g2^11*t^5.357)/g1 + (g1^12*t^5.447)/g2^12 + (g1^4*t^5.492)/g2^8 + (5*t^5.536)/(g1^4*g2^4) + t^5.58/g1^12 + (g2^4*t^5.624)/g1^20 + t^5.768/(g1^2*g2^2) - 3*t^6. + g1^39*g2^3*t^6.108 - g1^2*g2^2*t^6.232 - (g2^6*t^6.276)/g1^6 + (2*g1^20*t^6.376)/g2^4 + t^6.456/(g1^9*g2^9) - g1^4*g2^4*t^6.464 - (g2^8*t^6.508)/g1^4 + (2*g1^22*t^6.608)/g2^2 + (2*g1*t^6.643)/g2^11 + t^6.688/(g1^7*g2^7) + (g1^32*t^6.796)/g2^4 + 3*g1^24*t^6.84 + (3*g1^3*t^6.876)/g2^9 + 2*g1^16*g2^4*t^6.884 + t^6.911/(g1^18*g2^18) + (3*t^6.92)/(g1^5*g2^5) + t^6.964/(g1^13*g2) + (2*g1^13*t^7.063)/g2^11 + g1^26*g2^2*t^7.072 + (7*g1^5*t^7.108)/g2^7 + g1^18*g2^6*t^7.116 + t^7.143/(g1^16*g2^16) + (4*t^7.152)/(g1^3*g2^3) + (2*g1^15*t^7.295)/g2^9 + t^7.331/(g1^6*g2^18) + (5*g1^7*t^7.34)/g2^5 + (3*t^7.375)/(g1^14*g2^14) + (2*t^7.384)/(g1*g2) + g1^12*g2^12*t^7.393 + t^7.42/(g1^22*g2^10) + (g2^3*t^7.428)/g1^9 + (g2^7*t^7.472)/g1^17 + (g1^25*t^7.483)/g2^11 + (2*g1^17*t^7.528)/g2^7 + t^7.563/(g1^4*g2^16) + (6*g1^9*t^7.572)/g2^3 + (3*t^7.607)/(g1^12*g2^12) + 2*g1*g2*t^7.616 + t^7.652/(g1^20*g2^8) + (2*g2^5*t^7.66)/g1^7 + (g1^6*t^7.751)/g2^18 + (2*t^7.795)/(g1^2*g2^14) + (g1^11*t^7.804)/g2 + (6*t^7.84)/(g1^10*g2^10) + (2*t^7.884)/(g1^18*g2^6) + t^7.928/(g1^26*g2^2) + (g1^8*t^7.983)/g2^16 + t^8.027/g2^12 - 5*g1^13*g2*t^8.036 + (4*t^8.072)/(g1^8*g2^8) - g1^5*g2^5*t^8.08 + (g2^9*t^8.124)/g1^3 + g1^52*g2^4*t^8.144 + t^8.16/g1^24 + (g2^13*t^8.169)/g1^11 + (g1^18*t^8.171)/g2^18 + (g1^10*t^8.215)/g2^14 + (2*g1^2*t^8.259)/g2^10 - 2*g1^15*g2^3*t^8.268 + (2*t^8.304)/(g1^6*g2^6) - 2*g1^7*g2^7*t^8.312 + (2*t^8.348)/(g1^14*g2^2) + (g2^2*t^8.392)/g1^22 + (2*g1^33*t^8.412)/g2^3 + (g2^6*t^8.437)/g1^30 - g1^17*g2^5*t^8.5 - (3*t^8.536)/(g1^4*g2^4) - 2*g1^9*g2^9*t^8.544 - (2*t^8.58)/g1^12 - g1*g2^13*t^8.589 + (2*g1^35*t^8.644)/g2 + (3*g1^14*t^8.679)/g2^10 - (3*g1^6*t^8.724)/g2^6 + t^8.759/(g1^15*g2^15) - (8*t^8.768)/(g1^2*g2^2) - (5*g2^2*t^8.812)/g1^10 + (g1^45*t^8.832)/g2^3 + 3*g1^37*g2*t^8.876 + (3*g1^16*t^8.911)/g2^8 + 2*g1^29*g2^5*t^8.92 + (2*t^8.947)/(g1^5*g2^17) + t^8.991/(g1^13*g2^13) - t^4.384/(g1*g2*y) - (g1^12*t^6.42)/y - t^6.688/(g1^7*g2^7*y) - t^6.92/(g1^5*g2^5*y) - (g1^5*t^7.108)/(g2^7*y) - t^7.152/(g1^3*g2^3*y) - (g2*t^7.196)/(g1^11*y) + (g1^7*t^7.34)/(g2^5*y) + (2*g1^9*t^7.572)/(g2^3*y) + (g1*g2*t^7.616)/y + (g2^5*t^7.66)/(g1^7*y) + (g1^19*t^7.76)/(g2^5*y) + (2*g1^11*t^7.804)/(g2*y) + t^7.84/(g1^10*g2^10*y) + (2*g1^3*g2^3*t^7.848)/y + t^8.027/(g2^12*y) + (g1^13*g2*t^8.036)/y + (2*t^8.072)/(g1^8*g2^8*y) + (g1^5*g2^5*t^8.08)/y + t^8.116/(g1^16*g2^4*y) + (g1^2*t^8.259)/(g2^10*y) + (3*t^8.304)/(g1^6*g2^6*y) + (2*t^8.348)/(g1^14*g2^2*y) - (g1^25*g2*t^8.456)/y + (2*g1^4*t^8.492)/(g2^8*y) + (3*t^8.536)/(g1^4*g2^4*y) + (2*t^8.58)/(g1^12*y) + (2*t^8.768)/(g1^2*g2^2*y) + (g2^2*t^8.812)/(g1^10*y) - (g1^8*t^8.956)/(g2^4*y) - t^8.991/(g1^13*g2^13*y) - (t^4.384*y)/(g1*g2) - g1^12*t^6.42*y - (t^6.688*y)/(g1^7*g2^7) - (t^6.92*y)/(g1^5*g2^5) - (g1^5*t^7.108*y)/g2^7 - (t^7.152*y)/(g1^3*g2^3) - (g2*t^7.196*y)/g1^11 + (g1^7*t^7.34*y)/g2^5 + (2*g1^9*t^7.572*y)/g2^3 + g1*g2*t^7.616*y + (g2^5*t^7.66*y)/g1^7 + (g1^19*t^7.76*y)/g2^5 + (2*g1^11*t^7.804*y)/g2 + (t^7.84*y)/(g1^10*g2^10) + 2*g1^3*g2^3*t^7.848*y + (t^8.027*y)/g2^12 + g1^13*g2*t^8.036*y + (2*t^8.072*y)/(g1^8*g2^8) + g1^5*g2^5*t^8.08*y + (t^8.116*y)/(g1^16*g2^4) + (g1^2*t^8.259*y)/g2^10 + (3*t^8.304*y)/(g1^6*g2^6) + (2*t^8.348*y)/(g1^14*g2^2) - g1^25*g2*t^8.456*y + (2*g1^4*t^8.492*y)/g2^8 + (3*t^8.536*y)/(g1^4*g2^4) + (2*t^8.58*y)/g1^12 + (2*t^8.768*y)/(g1^2*g2^2) + (g2^2*t^8.812*y)/g1^10 - (g1^8*t^8.956*y)/g2^4 - (t^8.991*y)/(g1^13*g2^13)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1436 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ 0.7439 0.9365 0.7943 [M:[1.0715, 0.7854, 0.9386, 0.9183, 1.0, 0.8569, 0.6687], q:[0.4949, 0.4336], qb:[0.5664, 0.6481], phi:[0.4642]] t^2.006 + t^2.356 + t^2.571 + t^2.755 + t^2.785 + t^2.816 + t^3. + t^3.215 + t^4.012 + t^4.178 + 2*t^4.362 + t^4.393 + 2*t^4.577 + t^4.638 + t^4.712 + t^4.761 + 2*t^4.791 + 2*t^4.822 + t^4.927 + t^5.006 + t^5.036 + t^5.111 + 2*t^5.142 + t^5.172 + t^5.221 + t^5.282 + t^5.326 + t^5.356 + t^5.387 + t^5.51 + 4*t^5.571 + t^5.632 + t^5.785 + t^5.969 - 2*t^6. - t^4.393/y - t^4.393*y detail