Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56628 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ | 0.6491 | 0.8635 | 0.7517 | [M:[0.954, 0.8621, 1.046, 0.7069, 0.7988, 1.1379, 0.6782], q:[0.7385, 0.3075], qb:[0.3994, 0.4627], phi:[0.523]] | [M:[[4], [12], [-4], [-18], [-26], [-12], [28]], q:[[1], [-5]], qb:[[-13], [25]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{7}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{5}$, ${ }M_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{6}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{7}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{7}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{7}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{6}M_{7}$, ${ }M_{7}\phi_{1}q_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }M_{4}M_{6}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$ | ${}M_{2}M_{6}$ | -1 | t^2.035 + 2*t^2.121 + t^2.31 + t^2.396 + t^2.586 + 2*t^3.138 + 2*t^3.414 + t^3.69 + t^4.069 + 3*t^4.155 + 3*t^4.241 + 2*t^4.345 + 3*t^4.431 + 2*t^4.517 + 2*t^4.621 + 3*t^4.707 + t^4.793 + t^4.897 + t^4.983 + 3*t^5.173 + 4*t^5.259 + 4*t^5.448 + 5*t^5.534 + 3*t^5.724 + 3*t^5.81 - t^6. + t^6.086 + t^6.104 + 2*t^6.19 + 5*t^6.276 + 4*t^6.362 + 2*t^6.38 + 4*t^6.466 + 8*t^6.552 + 3*t^6.638 + 3*t^6.655 + 5*t^6.741 + 8*t^6.827 + 2*t^6.914 + 3*t^6.931 + t^7.017 + 3*t^7.103 + t^7.189 + 3*t^7.207 + 5*t^7.293 + 6*t^7.379 + 6*t^7.483 + 7*t^7.569 + 8*t^7.655 + 5*t^7.759 + 6*t^7.845 + 6*t^7.931 - t^8.035 - t^8.121 + t^8.138 + 3*t^8.207 + 2*t^8.224 + 2*t^8.31 + 5*t^8.396 + 2*t^8.414 + 6*t^8.482 + 4*t^8.5 + 6*t^8.586 + 11*t^8.672 + 4*t^8.69 + 4*t^8.758 + 5*t^8.776 + 9*t^8.862 + 13*t^8.948 + 4*t^8.966 - t^4.569/y - t^6.604/y - t^6.69/y - t^6.965/y + (2*t^7.155)/y + t^7.241/y + t^7.345/y + (4*t^7.431)/y + (2*t^7.517)/y + t^7.621/y + (2*t^7.707)/y + t^7.897/y + t^7.983/y + (3*t^8.173)/y + (4*t^8.259)/y + (5*t^8.448)/y + (7*t^8.534)/y - t^8.638/y + (4*t^8.724)/y + (3*t^8.81)/y - t^4.569*y - t^6.604*y - t^6.69*y - t^6.965*y + 2*t^7.155*y + t^7.241*y + t^7.345*y + 4*t^7.431*y + 2*t^7.517*y + t^7.621*y + 2*t^7.707*y + t^7.897*y + t^7.983*y + 3*t^8.173*y + 4*t^8.259*y + 5*t^8.448*y + 7*t^8.534*y - t^8.638*y + 4*t^8.724*y + 3*t^8.81*y | g1^28*t^2.035 + (2*t^2.121)/g1^18 + g1^20*t^2.31 + t^2.396/g1^26 + g1^12*t^2.586 + (2*t^3.138)/g1^4 + (2*t^3.414)/g1^12 + t^3.69/g1^20 + g1^56*t^4.069 + 3*g1^10*t^4.155 + (3*t^4.241)/g1^36 + 2*g1^48*t^4.345 + 3*g1^2*t^4.431 + (2*t^4.517)/g1^44 + 2*g1^40*t^4.621 + (3*t^4.707)/g1^6 + t^4.793/g1^52 + g1^32*t^4.897 + t^4.983/g1^14 + 3*g1^24*t^5.173 + (4*t^5.259)/g1^22 + 4*g1^16*t^5.448 + (5*t^5.534)/g1^30 + 3*g1^8*t^5.724 + (3*t^5.81)/g1^38 - t^6. + t^6.086/g1^46 + g1^84*t^6.104 + 2*g1^38*t^6.19 + (5*t^6.276)/g1^8 + (4*t^6.362)/g1^54 + 2*g1^76*t^6.38 + 4*g1^30*t^6.466 + (8*t^6.552)/g1^16 + (3*t^6.638)/g1^62 + 3*g1^68*t^6.655 + 5*g1^22*t^6.741 + (8*t^6.827)/g1^24 + (2*t^6.914)/g1^70 + 3*g1^60*t^6.931 + g1^14*t^7.017 + (3*t^7.103)/g1^32 + t^7.189/g1^78 + 3*g1^52*t^7.207 + 5*g1^6*t^7.293 + (6*t^7.379)/g1^40 + 6*g1^44*t^7.483 + (7*t^7.569)/g1^2 + (8*t^7.655)/g1^48 + 5*g1^36*t^7.759 + (6*t^7.845)/g1^10 + (6*t^7.931)/g1^56 - g1^28*t^8.035 - t^8.121/g1^18 + g1^112*t^8.138 + (3*t^8.207)/g1^64 + 2*g1^66*t^8.224 + 2*g1^20*t^8.31 + (5*t^8.396)/g1^26 + 2*g1^104*t^8.414 + (6*t^8.482)/g1^72 + 4*g1^58*t^8.5 + 6*g1^12*t^8.586 + (11*t^8.672)/g1^34 + 4*g1^96*t^8.69 + (4*t^8.758)/g1^80 + 5*g1^50*t^8.776 + 9*g1^4*t^8.862 + (13*t^8.948)/g1^42 + 4*g1^88*t^8.966 - t^4.569/(g1^2*y) - (g1^26*t^6.604)/y - t^6.69/(g1^20*y) - t^6.965/(g1^28*y) + (2*g1^10*t^7.155)/y + t^7.241/(g1^36*y) + (g1^48*t^7.345)/y + (4*g1^2*t^7.431)/y + (2*t^7.517)/(g1^44*y) + (g1^40*t^7.621)/y + (2*t^7.707)/(g1^6*y) + (g1^32*t^7.897)/y + t^7.983/(g1^14*y) + (3*g1^24*t^8.173)/y + (4*t^8.259)/(g1^22*y) + (5*g1^16*t^8.448)/y + (7*t^8.534)/(g1^30*y) - (g1^54*t^8.638)/y + (4*g1^8*t^8.724)/y + (3*t^8.81)/(g1^38*y) - (t^4.569*y)/g1^2 - g1^26*t^6.604*y - (t^6.69*y)/g1^20 - (t^6.965*y)/g1^28 + 2*g1^10*t^7.155*y + (t^7.241*y)/g1^36 + g1^48*t^7.345*y + 4*g1^2*t^7.431*y + (2*t^7.517*y)/g1^44 + g1^40*t^7.621*y + (2*t^7.707*y)/g1^6 + g1^32*t^7.897*y + (t^7.983*y)/g1^14 + 3*g1^24*t^8.173*y + (4*t^8.259*y)/g1^22 + 5*g1^16*t^8.448*y + (7*t^8.534*y)/g1^30 - g1^54*t^8.638*y + 4*g1^8*t^8.724*y + (3*t^8.81*y)/g1^38 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55035 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ | 0.6283 | 0.8228 | 0.7636 | [M:[0.9544, 0.8632, 1.0456, 0.7052, 0.7964, 1.1368], q:[0.7386, 0.307], qb:[0.3982, 0.465], phi:[0.5228]] | 2*t^2.116 + t^2.316 + t^2.389 + t^2.59 + 2*t^3.137 + 2*t^3.41 + t^3.684 + t^3.958 + t^4.158 + 3*t^4.231 + t^4.358 + 2*t^4.432 + 2*t^4.505 + t^4.632 + 3*t^4.705 + t^4.778 + t^4.906 + t^4.979 + t^5.179 + 4*t^5.252 + 2*t^5.453 + 5*t^5.526 + 2*t^5.726 + 3*t^5.8 - t^6. - t^4.568/y - t^4.568*y | detail |