Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3869 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ 0.6491 0.8635 0.7517 [M:[0.954, 1.1379, 1.046, 0.7069, 0.8621, 0.7988, 0.6782], q:[0.7385, 0.3075], qb:[0.4627, 0.3994], phi:[0.523]] [M:[[-4], [12], [4], [18], [-12], [26], [-28]], q:[[-1], [5]], qb:[[-25], [13]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{6}$, ${ }M_{5}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{5}M_{7}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{7}$, ${ }M_{7}\phi_{1}q_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{7}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ ${}M_{5}\phi_{1}q_{2}^{2}$ -1 t^2.035 + 2*t^2.121 + t^2.31 + t^2.396 + t^2.586 + 2*t^3.138 + 2*t^3.414 + t^3.69 + t^4.069 + 3*t^4.155 + 3*t^4.241 + 2*t^4.345 + 3*t^4.431 + 2*t^4.517 + 2*t^4.621 + 3*t^4.707 + t^4.793 + t^4.897 + t^4.983 + 3*t^5.173 + 4*t^5.259 + 4*t^5.448 + 5*t^5.534 + 3*t^5.724 + 3*t^5.81 - t^6. + t^6.086 + t^6.104 + 2*t^6.19 + 5*t^6.276 + 4*t^6.362 + 2*t^6.38 + 4*t^6.466 + 8*t^6.552 + 3*t^6.638 + 3*t^6.655 + 5*t^6.741 + 8*t^6.827 + 2*t^6.914 + 3*t^6.931 + t^7.017 + 3*t^7.103 + t^7.189 + 3*t^7.207 + 5*t^7.293 + 6*t^7.379 + 6*t^7.483 + 7*t^7.569 + 8*t^7.655 + 5*t^7.759 + 6*t^7.845 + 6*t^7.931 - t^8.035 - t^8.121 + t^8.138 + 3*t^8.207 + 2*t^8.224 + 2*t^8.31 + 5*t^8.396 + 2*t^8.414 + 6*t^8.482 + 4*t^8.5 + 6*t^8.586 + 11*t^8.672 + 4*t^8.69 + 4*t^8.758 + 5*t^8.776 + 9*t^8.862 + 13*t^8.948 + 4*t^8.966 - t^4.569/y - t^6.604/y - t^6.69/y - t^6.965/y + (2*t^7.155)/y + t^7.241/y + t^7.345/y + (4*t^7.431)/y + (2*t^7.517)/y + t^7.621/y + (2*t^7.707)/y + t^7.897/y + t^7.983/y + (3*t^8.173)/y + (4*t^8.259)/y + (5*t^8.448)/y + (7*t^8.534)/y - t^8.638/y + (4*t^8.724)/y + (3*t^8.81)/y - t^4.569*y - t^6.604*y - t^6.69*y - t^6.965*y + 2*t^7.155*y + t^7.241*y + t^7.345*y + 4*t^7.431*y + 2*t^7.517*y + t^7.621*y + 2*t^7.707*y + t^7.897*y + t^7.983*y + 3*t^8.173*y + 4*t^8.259*y + 5*t^8.448*y + 7*t^8.534*y - t^8.638*y + 4*t^8.724*y + 3*t^8.81*y t^2.035/g1^28 + 2*g1^18*t^2.121 + t^2.31/g1^20 + g1^26*t^2.396 + t^2.586/g1^12 + 2*g1^4*t^3.138 + 2*g1^12*t^3.414 + g1^20*t^3.69 + t^4.069/g1^56 + (3*t^4.155)/g1^10 + 3*g1^36*t^4.241 + (2*t^4.345)/g1^48 + (3*t^4.431)/g1^2 + 2*g1^44*t^4.517 + (2*t^4.621)/g1^40 + 3*g1^6*t^4.707 + g1^52*t^4.793 + t^4.897/g1^32 + g1^14*t^4.983 + (3*t^5.173)/g1^24 + 4*g1^22*t^5.259 + (4*t^5.448)/g1^16 + 5*g1^30*t^5.534 + (3*t^5.724)/g1^8 + 3*g1^38*t^5.81 - t^6. + g1^46*t^6.086 + t^6.104/g1^84 + (2*t^6.19)/g1^38 + 5*g1^8*t^6.276 + 4*g1^54*t^6.362 + (2*t^6.38)/g1^76 + (4*t^6.466)/g1^30 + 8*g1^16*t^6.552 + 3*g1^62*t^6.638 + (3*t^6.655)/g1^68 + (5*t^6.741)/g1^22 + 8*g1^24*t^6.827 + 2*g1^70*t^6.914 + (3*t^6.931)/g1^60 + t^7.017/g1^14 + 3*g1^32*t^7.103 + g1^78*t^7.189 + (3*t^7.207)/g1^52 + (5*t^7.293)/g1^6 + 6*g1^40*t^7.379 + (6*t^7.483)/g1^44 + 7*g1^2*t^7.569 + 8*g1^48*t^7.655 + (5*t^7.759)/g1^36 + 6*g1^10*t^7.845 + 6*g1^56*t^7.931 - t^8.035/g1^28 - g1^18*t^8.121 + t^8.138/g1^112 + 3*g1^64*t^8.207 + (2*t^8.224)/g1^66 + (2*t^8.31)/g1^20 + 5*g1^26*t^8.396 + (2*t^8.414)/g1^104 + 6*g1^72*t^8.482 + (4*t^8.5)/g1^58 + (6*t^8.586)/g1^12 + 11*g1^34*t^8.672 + (4*t^8.69)/g1^96 + 4*g1^80*t^8.758 + (5*t^8.776)/g1^50 + (9*t^8.862)/g1^4 + 13*g1^42*t^8.948 + (4*t^8.966)/g1^88 - (g1^2*t^4.569)/y - t^6.604/(g1^26*y) - (g1^20*t^6.69)/y - (g1^28*t^6.965)/y + (2*t^7.155)/(g1^10*y) + (g1^36*t^7.241)/y + t^7.345/(g1^48*y) + (4*t^7.431)/(g1^2*y) + (2*g1^44*t^7.517)/y + t^7.621/(g1^40*y) + (2*g1^6*t^7.707)/y + t^7.897/(g1^32*y) + (g1^14*t^7.983)/y + (3*t^8.173)/(g1^24*y) + (4*g1^22*t^8.259)/y + (5*t^8.448)/(g1^16*y) + (7*g1^30*t^8.534)/y - t^8.638/(g1^54*y) + (4*t^8.724)/(g1^8*y) + (3*g1^38*t^8.81)/y - g1^2*t^4.569*y - (t^6.604*y)/g1^26 - g1^20*t^6.69*y - g1^28*t^6.965*y + (2*t^7.155*y)/g1^10 + g1^36*t^7.241*y + (t^7.345*y)/g1^48 + (4*t^7.431*y)/g1^2 + 2*g1^44*t^7.517*y + (t^7.621*y)/g1^40 + 2*g1^6*t^7.707*y + (t^7.897*y)/g1^32 + g1^14*t^7.983*y + (3*t^8.173*y)/g1^24 + 4*g1^22*t^8.259*y + (5*t^8.448*y)/g1^16 + 7*g1^30*t^8.534*y - (t^8.638*y)/g1^54 + (4*t^8.724*y)/g1^8 + 3*g1^38*t^8.81*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3389 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ 0.6283 0.8228 0.7636 [M:[0.9544, 1.1368, 1.0456, 0.7052, 0.8632, 0.7964], q:[0.7386, 0.307], qb:[0.465, 0.3982], phi:[0.5228]] 2*t^2.116 + t^2.316 + t^2.389 + t^2.59 + 2*t^3.137 + 2*t^3.41 + t^3.684 + t^3.958 + t^4.158 + 3*t^4.231 + t^4.358 + 2*t^4.432 + 2*t^4.505 + t^4.632 + 3*t^4.705 + t^4.778 + t^4.906 + t^4.979 + t^5.179 + 4*t^5.252 + 2*t^5.453 + 5*t^5.526 + 2*t^5.726 + 3*t^5.8 - t^6. - t^4.568/y - t^4.568*y detail