Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56568 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_2\phi_1^2$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_1^2$ + $ M_7q_2\tilde{q}_1$ + $ M_3M_8$ | 0.74 | 0.9294 | 0.7963 | [X:[], M:[0.9708, 1.0565, 1.0292, 0.8305, 0.9162, 0.6978, 0.8578, 0.9708], q:[0.4152, 0.614], qb:[0.5283, 0.5555], phi:[0.4717]] | [X:[], M:[[-3, 1], [2, 0], [3, -1], [-6, 0], [-1, -1], [7, 0], [-7, 1], [-3, 1]], q:[[-3, 0], [6, -1]], qb:[[1, 0], [0, 1]], phi:[[-1, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_6$, $ M_4$, $ M_7$, $ M_5$, $ \phi_1^2$, $ M_1$, $ M_8$, $ M_2$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_4M_6$, $ \phi_1\tilde{q}_1^2$, $ M_6M_7$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_5M_6$, $ \phi_1q_2\tilde{q}_1$, $ M_6\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_4^2$, $ M_1M_6$, $ M_6M_8$, $ M_4M_7$, $ \phi_1q_2^2$, $ M_7^2$, $ M_4M_5$, $ M_2M_6$, $ M_5M_7$, $ M_4\phi_1^2$, $ M_1M_4$, $ M_4M_8$, $ M_7\phi_1^2$, $ M_1M_7$, $ M_7M_8$, $ M_5^2$, $ M_2M_4$, $ M_1M_5$, $ M_5M_8$, $ \phi_1^4$, $ M_2M_7$, $ M_1\phi_1^2$, $ M_8\phi_1^2$, $ M_1^2$, $ M_1M_8$, $ M_8^2$ | . | -3 | t^2.09 + t^2.49 + t^2.57 + t^2.75 + t^2.83 + 2*t^2.91 + t^3.17 + t^4.19 + t^4.25 + t^4.33 + t^4.5 + 2*t^4.58 + 2*t^4.67 + t^4.75 + 2*t^4.84 + 2*t^4.92 + t^4.98 + 2*t^5.01 + t^5.06 + t^5.1 + t^5.15 + t^5.24 + t^5.26 + 2*t^5.32 + 2*t^5.4 + 2*t^5.49 + t^5.5 + 3*t^5.66 + 2*t^5.74 + 2*t^5.82 - 3*t^6. + t^6.08 - t^6.18 - t^6.26 + t^6.28 + 2*t^6.68 + t^6.74 + 2*t^6.76 + t^6.82 + t^6.84 + t^6.9 + 2*t^6.94 + t^6.99 + 2*t^7.02 + 3*t^7.08 + 2*t^7.1 + 4*t^7.16 + t^7.19 + 4*t^7.24 + t^7.25 + t^7.32 + 2*t^7.33 + t^7.36 + 4*t^7.42 + t^7.47 + 5*t^7.5 + t^7.56 + 4*t^7.58 + 2*t^7.59 + t^7.64 + 2*t^7.66 + t^7.67 + t^7.72 + t^7.73 + 2*t^7.75 + 2*t^7.81 + 2*t^7.84 + t^7.85 + 3*t^7.9 + 2*t^7.92 + 2*t^7.98 + t^7.99 + 2*t^8.06 + t^8.07 - 4*t^8.09 + 2*t^8.15 + 3*t^8.23 + t^8.25 - t^8.27 + 3*t^8.32 - 2*t^8.35 + t^8.37 + 2*t^8.4 + t^8.41 - 3*t^8.49 - t^8.57 + 2*t^8.66 + 2*t^8.74 - 6*t^8.75 + 2*t^8.77 - 3*t^8.83 + 2*t^8.85 - 6*t^8.91 - t^8.92 + t^8.94 + t^8.99 - t^4.42/y - t^6.51/y - t^6.91/y - t^6.99/y - t^7.16/y - t^7.33/y + t^7.5/y + t^7.58/y + (2*t^7.67)/y + (2*t^7.84)/y + (2*t^7.92)/y + (2*t^8.01)/y + t^8.06/y + t^8.24/y + t^8.26/y + (3*t^8.32)/y + (3*t^8.4)/y + (2*t^8.49)/y + t^8.58/y - t^8.6/y + (3*t^8.66)/y + (3*t^8.74)/y + t^8.82/y + t^8.92/y - t^4.42*y - t^6.51*y - t^6.91*y - t^6.99*y - t^7.16*y - t^7.33*y + t^7.5*y + t^7.58*y + 2*t^7.67*y + 2*t^7.84*y + 2*t^7.92*y + 2*t^8.01*y + t^8.06*y + t^8.24*y + t^8.26*y + 3*t^8.32*y + 3*t^8.4*y + 2*t^8.49*y + t^8.58*y - t^8.6*y + 3*t^8.66*y + 3*t^8.74*y + t^8.82*y + t^8.92*y | g1^7*t^2.09 + t^2.49/g1^6 + (g2*t^2.57)/g1^7 + t^2.75/(g1*g2) + t^2.83/g1^2 + (2*g2*t^2.91)/g1^3 + g1^2*t^3.17 + g1^14*t^4.19 + t^4.25/g1^3 + (g2*t^4.33)/g1^4 + (g1^2*t^4.5)/g2 + 2*g1*t^4.58 + 2*g2*t^4.67 + (g2^2*t^4.75)/g1 + (2*g1^6*t^4.84)/g2 + 2*g1^5*t^4.92 + t^4.98/g1^12 + 2*g1^4*g2*t^5.01 + (g2*t^5.06)/g1^13 + (g1^11*t^5.1)/g2^2 + (g2^2*t^5.15)/g1^14 + t^5.24/(g1^7*g2) + g1^9*t^5.26 + (2*t^5.32)/g1^8 + (2*g2*t^5.4)/g1^9 + (2*g2^2*t^5.49)/g1^10 + t^5.5/(g1^2*g2^2) + (3*t^5.66)/g1^4 + (2*g2*t^5.74)/g1^5 + (2*g2^2*t^5.82)/g1^6 - 3*t^6. + (g2*t^6.08)/g1 - (g1^6*t^6.18)/g2^2 - (g1^5*t^6.26)/g2 + g1^21*t^6.28 + 2*g1^8*t^6.68 + t^6.74/g1^9 + 2*g1^7*g2*t^6.76 + (g2*t^6.82)/g1^10 + g1^6*g2^2*t^6.84 + (g2^2*t^6.9)/g1^11 + (2*g1^13*t^6.94)/g2 + t^6.99/(g1^4*g2) + 2*g1^12*t^7.02 + (3*t^7.08)/g1^5 + 2*g1^11*g2*t^7.1 + (4*g2*t^7.16)/g1^6 + (g1^18*t^7.19)/g2^2 + (4*g2^2*t^7.24)/g1^7 + (g1*t^7.25)/g2^2 + (g2^3*t^7.32)/g1^8 + (2*t^7.33)/g2 + g1^16*t^7.36 + (4*t^7.42)/g1 + t^7.47/g1^18 + (5*g2*t^7.5)/g1^2 + (g2*t^7.56)/g1^19 + (4*g2^2*t^7.58)/g1^3 + (2*g1^5*t^7.59)/g2^2 + (g2^2*t^7.64)/g1^20 + (2*g2^3*t^7.66)/g1^4 + (g1^4*t^7.67)/g2 + (g2^3*t^7.72)/g1^21 + t^7.73/(g1^13*g2) + 2*g1^3*t^7.75 + (2*t^7.81)/g1^14 + 2*g1^2*g2*t^7.84 + (g1^10*t^7.85)/g2^3 + (3*g2*t^7.9)/g1^15 + 2*g1*g2^2*t^7.92 + (2*g2^2*t^7.98)/g1^16 + t^7.99/(g1^8*g2^2) + (2*g2^3*t^8.06)/g1^17 + t^8.07/(g1^9*g2) - 4*g1^7*t^8.09 + (2*t^8.15)/g1^10 + (3*g2*t^8.23)/g1^11 + t^8.25/(g1^3*g2^3) - (g1^13*t^8.27)/g2^2 + (3*g2^2*t^8.32)/g1^12 - (2*g1^12*t^8.35)/g2 + g1^28*t^8.37 + (2*g2^3*t^8.4)/g1^13 + t^8.41/(g1^5*g2) - (3*t^8.49)/g1^6 - (g2*t^8.57)/g1^7 + (2*g2^2*t^8.66)/g1^8 + (2*g2^3*t^8.74)/g1^9 - (6*t^8.75)/(g1*g2) + 2*g1^15*t^8.77 - (3*t^8.83)/g1^2 + 2*g1^14*g2*t^8.85 - (6*g2*t^8.91)/g1^3 - (g1^5*t^8.92)/g2^3 + g1^13*g2^2*t^8.94 + (g2^2*t^8.99)/g1^4 - t^4.42/(g1*y) - (g1^6*t^6.51)/y - t^6.91/(g1^7*y) - (g2*t^6.99)/(g1^8*y) - t^7.16/(g1^2*g2*y) - (g2*t^7.33)/(g1^4*y) + (g1^2*t^7.5)/(g2*y) + (g1*t^7.58)/y + (2*g2*t^7.67)/y + (2*g1^6*t^7.84)/(g2*y) + (2*g1^5*t^7.92)/y + (2*g1^4*g2*t^8.01)/y + (g2*t^8.06)/(g1^13*y) + t^8.24/(g1^7*g2*y) + (g1^9*t^8.26)/y + (3*t^8.32)/(g1^8*y) + (3*g2*t^8.4)/(g1^9*y) + (2*g2^2*t^8.49)/(g1^10*y) + t^8.58/(g1^3*g2*y) - (g1^13*t^8.6)/y + (3*t^8.66)/(g1^4*y) + (3*g2*t^8.74)/(g1^5*y) + (g2^2*t^8.82)/(g1^6*y) + (g1*t^8.92)/(g2*y) - (t^4.42*y)/g1 - g1^6*t^6.51*y - (t^6.91*y)/g1^7 - (g2*t^6.99*y)/g1^8 - (t^7.16*y)/(g1^2*g2) - (g2*t^7.33*y)/g1^4 + (g1^2*t^7.5*y)/g2 + g1*t^7.58*y + 2*g2*t^7.67*y + (2*g1^6*t^7.84*y)/g2 + 2*g1^5*t^7.92*y + 2*g1^4*g2*t^8.01*y + (g2*t^8.06*y)/g1^13 + (t^8.24*y)/(g1^7*g2) + g1^9*t^8.26*y + (3*t^8.32*y)/g1^8 + (3*g2*t^8.4*y)/g1^9 + (2*g2^2*t^8.49*y)/g1^10 + (t^8.58*y)/(g1^3*g2) - g1^13*t^8.6*y + (3*t^8.66*y)/g1^4 + (3*g2*t^8.74*y)/g1^5 + (g2^2*t^8.82*y)/g1^6 + (g1*t^8.92*y)/g2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
54506 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_2\phi_1^2$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_1^2$ + $ M_7q_2\tilde{q}_1$ | 0.7387 | 0.9262 | 0.7975 | [X:[], M:[1.0, 1.0564, 1.0, 0.8307, 0.8871, 0.6975, 0.8871], q:[0.4153, 0.5847], qb:[0.5282, 0.5847], phi:[0.4718]] | t^2.09 + t^2.49 + 2*t^2.66 + t^2.83 + 2*t^3. + t^3.17 + t^4.19 + t^4.25 + 2*t^4.42 + 2*t^4.58 + 4*t^4.75 + 4*t^4.92 + t^4.98 + 2*t^5.09 + 2*t^5.15 + t^5.26 + 4*t^5.32 + 2*t^5.49 + 5*t^5.66 + 2*t^5.83 - 2*t^6. - t^4.42/y - t^4.42*y | detail |