Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
54506 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_2\phi_1^2$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_1^2$ + $ M_7q_2\tilde{q}_1$ 0.7387 0.9262 0.7975 [X:[], M:[1.0, 1.0564, 1.0, 0.8307, 0.8871, 0.6975, 0.8871], q:[0.4153, 0.5847], qb:[0.5282, 0.5847], phi:[0.4718]] [X:[], M:[[-3, 1], [2, 0], [3, -1], [-6, 0], [-1, -1], [7, 0], [-7, 1]], q:[[-3, 0], [6, -1]], qb:[[1, 0], [0, 1]], phi:[[-1, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_4$, $ M_5$, $ M_7$, $ \phi_1^2$, $ M_3$, $ M_1$, $ M_2$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_2$, $ M_4M_6$, $ \phi_1\tilde{q}_1^2$, $ M_5M_6$, $ \phi_1q_2\tilde{q}_1$, $ M_6M_7$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_6\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_2^2$, $ M_4^2$, $ M_3M_6$, $ M_1M_6$, $ M_4M_5$, $ M_4M_7$, $ M_2M_6$, $ M_5M_7$, $ M_4\phi_1^2$, $ M_5^2$, $ M_7^2$, $ M_3M_4$, $ M_5\phi_1^2$, $ M_1M_4$, $ M_7\phi_1^2$, $ M_2M_4$, $ M_1M_5$, $ M_3M_7$, $ \phi_1^4$, $ M_3M_5$, $ M_1M_7$, $ M_2M_5$, $ M_3\phi_1^2$, $ M_2M_7$, $ M_1\phi_1^2$ $M_1^2$, $ M_3^2$ -2 t^2.09 + t^2.49 + 2*t^2.66 + t^2.83 + 2*t^3. + t^3.17 + t^4.19 + t^4.25 + 2*t^4.42 + 2*t^4.58 + 4*t^4.75 + 4*t^4.92 + t^4.98 + 2*t^5.09 + 2*t^5.15 + t^5.26 + 4*t^5.32 + 2*t^5.49 + 5*t^5.66 + 2*t^5.83 - 2*t^6. + t^6.28 + 2*t^6.68 + t^6.74 + 4*t^6.85 + 2*t^6.91 + 4*t^7.02 + 5*t^7.08 + 2*t^7.19 + 6*t^7.25 + t^7.35 + 10*t^7.42 + t^7.48 + 8*t^7.58 + 2*t^7.65 + 6*t^7.75 + 4*t^7.81 + 4*t^7.92 + 6*t^7.98 - 3*t^8.09 + 4*t^8.15 - 2*t^8.26 + 6*t^8.32 + t^8.37 - 6*t^8.66 + 2*t^8.77 - 2*t^8.83 + 4*t^8.94 - t^4.42/y - t^6.51/y - t^6.91/y - (2*t^7.08)/y + t^7.58/y + (4*t^7.75)/y + (2*t^7.92)/y + (2*t^8.09)/y + (2*t^8.15)/y + t^8.26/y + (3*t^8.32)/y + (4*t^8.49)/y - t^8.6/y + (5*t^8.66)/y + (4*t^8.83)/y - t^4.42*y - t^6.51*y - t^6.91*y - 2*t^7.08*y + t^7.58*y + 4*t^7.75*y + 2*t^7.92*y + 2*t^8.09*y + 2*t^8.15*y + t^8.26*y + 3*t^8.32*y + 4*t^8.49*y - t^8.6*y + 5*t^8.66*y + 4*t^8.83*y g1^7*t^2.09 + t^2.49/g1^6 + t^2.66/(g1*g2) + (g2*t^2.66)/g1^7 + t^2.83/g1^2 + (g1^3*t^3.)/g2 + (g2*t^3.)/g1^3 + g1^2*t^3.17 + g1^14*t^4.19 + t^4.25/g1^3 + (g1^2*t^4.42)/g2 + (g2*t^4.42)/g1^4 + 2*g1*t^4.58 + (2*g1^6*t^4.75)/g2 + 2*g2*t^4.75 + 2*g1^5*t^4.92 + (g1^11*t^4.92)/g2^2 + (g2^2*t^4.92)/g1 + t^4.98/g1^12 + (g1^10*t^5.09)/g2 + g1^4*g2*t^5.09 + t^5.15/(g1^7*g2) + (g2*t^5.15)/g1^13 + g1^9*t^5.26 + (2*t^5.32)/g1^8 + t^5.32/(g1^2*g2^2) + (g2^2*t^5.32)/g1^14 + t^5.49/(g1^3*g2) + (g2*t^5.49)/g1^9 + (3*t^5.66)/g1^4 + (g1^2*t^5.66)/g2^2 + (g2^2*t^5.66)/g1^10 + (g1*t^5.83)/g2 + (g2*t^5.83)/g1^5 - 2*t^6. + g1^21*t^6.28 + 2*g1^8*t^6.68 + t^6.74/g1^9 + (2*g1^13*t^6.85)/g2 + 2*g1^7*g2*t^6.85 + t^6.91/(g1^4*g2) + (g2*t^6.91)/g1^10 + 2*g1^12*t^7.02 + (g1^18*t^7.02)/g2^2 + g1^6*g2^2*t^7.02 + (3*t^7.08)/g1^5 + (g1*t^7.08)/g2^2 + (g2^2*t^7.08)/g1^11 + (g1^17*t^7.19)/g2 + g1^11*g2*t^7.19 + (3*t^7.25)/g2 + (3*g2*t^7.25)/g1^6 + g1^16*t^7.35 + (4*t^7.42)/g1 + (3*g1^5*t^7.42)/g2^2 + (3*g2^2*t^7.42)/g1^7 + t^7.48/g1^18 + (g1^10*t^7.58)/g2^3 + (3*g1^4*t^7.58)/g2 + (3*g2*t^7.58)/g1^2 + (g2^3*t^7.58)/g1^8 + t^7.65/(g1^13*g2) + (g2*t^7.65)/g1^19 + 2*g1^3*t^7.75 + (2*g1^9*t^7.75)/g2^2 + (2*g2^2*t^7.75)/g1^3 + (2*t^7.81)/g1^14 + t^7.81/(g1^8*g2^2) + (g2^2*t^7.81)/g1^20 + (g1^14*t^7.92)/g2^3 + (g1^8*t^7.92)/g2 + g1^2*g2*t^7.92 + (g2^3*t^7.92)/g1^4 + t^7.98/(g1^3*g2^3) + (2*t^7.98)/(g1^9*g2) + (2*g2*t^7.98)/g1^15 + (g2^3*t^7.98)/g1^21 - 3*g1^7*t^8.09 + (2*t^8.15)/g1^10 + t^8.15/(g1^4*g2^2) + (g2^2*t^8.15)/g1^16 - (g1^12*t^8.26)/g2 - g1^6*g2*t^8.26 + (g1*t^8.32)/g2^3 + (2*t^8.32)/(g1^5*g2) + (2*g2*t^8.32)/g1^11 + (g2^3*t^8.32)/g1^17 + g1^28*t^8.37 - (2*t^8.49)/g1^6 + t^8.49/g2^2 + (g2^2*t^8.49)/g1^12 - (3*t^8.66)/(g1*g2) - (3*g2*t^8.66)/g1^7 + 2*g1^15*t^8.77 - (2*t^8.83)/g1^2 + (2*g1^20*t^8.94)/g2 + 2*g1^14*g2*t^8.94 - t^4.42/(g1*y) - (g1^6*t^6.51)/y - t^6.91/(g1^7*y) - t^7.08/(g1^2*g2*y) - (g2*t^7.08)/(g1^8*y) + (g1*t^7.58)/y + (2*g1^6*t^7.75)/(g2*y) + (2*g2*t^7.75)/y + (2*g1^5*t^7.92)/y + (g1^10*t^8.09)/(g2*y) + (g1^4*g2*t^8.09)/y + t^8.15/(g1^7*g2*y) + (g2*t^8.15)/(g1^13*y) + (g1^9*t^8.26)/y + (3*t^8.32)/(g1^8*y) + (2*t^8.49)/(g1^3*g2*y) + (2*g2*t^8.49)/(g1^9*y) - (g1^13*t^8.6)/y + (3*t^8.66)/(g1^4*y) + (g1^2*t^8.66)/(g2^2*y) + (g2^2*t^8.66)/(g1^10*y) + (2*g1*t^8.83)/(g2*y) + (2*g2*t^8.83)/(g1^5*y) - (t^4.42*y)/g1 - g1^6*t^6.51*y - (t^6.91*y)/g1^7 - (t^7.08*y)/(g1^2*g2) - (g2*t^7.08*y)/g1^8 + g1*t^7.58*y + (2*g1^6*t^7.75*y)/g2 + 2*g2*t^7.75*y + 2*g1^5*t^7.92*y + (g1^10*t^8.09*y)/g2 + g1^4*g2*t^8.09*y + (t^8.15*y)/(g1^7*g2) + (g2*t^8.15*y)/g1^13 + g1^9*t^8.26*y + (3*t^8.32*y)/g1^8 + (2*t^8.49*y)/(g1^3*g2) + (2*g2*t^8.49*y)/g1^9 - g1^13*t^8.6*y + (3*t^8.66*y)/g1^4 + (g1^2*t^8.66*y)/g2^2 + (g2^2*t^8.66*y)/g1^10 + (2*g1*t^8.83*y)/g2 + (2*g2*t^8.83*y)/g1^5


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
56566 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_2\phi_1^2$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_1^2$ + $ M_7q_2\tilde{q}_1$ + $ M_2M_6$ + $ M_4X_1$ 0.6852 0.8519 0.8043 [X:[1.3333], M:[1.0, 1.1111, 1.0, 0.6667, 0.7778, 0.8889, 0.7778], q:[0.3333, 0.6667], qb:[0.5556, 0.6667], phi:[0.4444]] 2*t^2.33 + 2*t^2.67 + 2*t^3. + t^3.33 + 2*t^4. + 2*t^4.33 + 4*t^4.67 + 4*t^5. + 9*t^5.33 + 4*t^5.67 - t^6. - t^4.33/y - t^4.33*y detail {a: 37/54, c: 23/27, X1: 4/3, M1: 1, M2: 10/9, M3: 1, M4: 2/3, M5: 7/9, M6: 8/9, M7: 7/9, q1: 1/3, q2: 2/3, qb1: 5/9, qb2: 2/3, phi1: 4/9}
56569 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_2\phi_1^2$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_1^2$ + $ M_7q_2\tilde{q}_1$ + $ M_2M_8$ 0.7441 0.9354 0.7955 [X:[], M:[1.0, 1.0606, 1.0, 0.8183, 0.8789, 0.7119, 0.8789, 0.9394], q:[0.4092, 0.5908], qb:[0.5303, 0.5908], phi:[0.4697]] t^2.14 + t^2.46 + 2*t^2.64 + 2*t^2.82 + 2*t^3. + t^4.23 + t^4.27 + 2*t^4.41 + 2*t^4.59 + 4*t^4.77 + t^4.91 + 5*t^4.95 + 2*t^5.09 + 2*t^5.14 + 5*t^5.27 + 4*t^5.46 + 6*t^5.64 + 2*t^5.82 - 3*t^6. - t^4.41/y - t^4.41*y detail
56568 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_2\phi_1^2$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_1^2$ + $ M_7q_2\tilde{q}_1$ + $ M_3M_8$ 0.74 0.9294 0.7963 [X:[], M:[0.9708, 1.0565, 1.0292, 0.8305, 0.9162, 0.6978, 0.8578, 0.9708], q:[0.4152, 0.614], qb:[0.5283, 0.5555], phi:[0.4717]] t^2.09 + t^2.49 + t^2.57 + t^2.75 + t^2.83 + 2*t^2.91 + t^3.17 + t^4.19 + t^4.25 + t^4.33 + t^4.5 + 2*t^4.58 + 2*t^4.67 + t^4.75 + 2*t^4.84 + 2*t^4.92 + t^4.98 + 2*t^5.01 + t^5.06 + t^5.1 + t^5.15 + t^5.24 + t^5.26 + 2*t^5.32 + 2*t^5.4 + 2*t^5.49 + t^5.5 + 3*t^5.66 + 2*t^5.74 + 2*t^5.82 - 3*t^6. - t^4.42/y - t^4.42*y detail
56575 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_2\phi_1^2$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_1^2$ + $ M_7q_2\tilde{q}_1$ + $ M_6^2$ + $ M_4X_1$ 0.6396 0.8003 0.7992 [X:[1.4286], M:[1.0, 1.1429, 1.0, 0.5714, 0.7143, 1.0, 0.7143], q:[0.2857, 0.7143], qb:[0.5714, 0.7143], phi:[0.4286]] 2*t^2.14 + t^2.57 + 3*t^3. + t^3.43 + t^3.86 + 6*t^4.29 + t^4.71 + 8*t^5.14 + 6*t^5.57 + t^6. - t^4.29/y - t^4.29*y detail {a: 1755/2744, c: 549/686, X1: 10/7, M1: 1, M2: 8/7, M3: 1, M4: 4/7, M5: 5/7, M6: 1, M7: 5/7, q1: 2/7, q2: 5/7, qb1: 4/7, qb2: 5/7, phi1: 3/7}
56567 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_2\phi_1^2$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_1^2$ + $ M_7q_2\tilde{q}_1$ + $ M_8\phi_1^2$ 0.7336 0.9178 0.7993 [X:[], M:[1.0, 1.0523, 1.0, 0.8431, 0.8954, 0.6831, 0.8954, 1.0523], q:[0.4215, 0.5785], qb:[0.5262, 0.5785], phi:[0.4738]] t^2.05 + t^2.53 + 2*t^2.69 + 2*t^3. + 2*t^3.16 + t^4.1 + t^4.26 + 2*t^4.42 + 2*t^4.58 + 4*t^4.74 + 3*t^4.89 + 2*t^5.05 + t^5.06 + 2*t^5.21 + 2*t^5.22 + 3*t^5.37 + 5*t^5.69 + 2*t^5.84 - 3*t^6. - t^4.42/y - t^4.42*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
48297 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_2\phi_1^2$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_1^2$ 0.7303 0.9135 0.7995 [X:[], M:[1.0279, 1.0484, 0.9721, 0.8548, 0.8753, 0.6693], q:[0.4274, 0.5446], qb:[0.5242, 0.6005], phi:[0.4758]] t^2.01 + t^2.56 + t^2.63 + t^2.85 + t^2.92 + t^3.08 + t^3.15 + t^3.21 + t^4.02 + t^4.28 + t^4.34 + t^4.51 + 2*t^4.57 + 2*t^4.63 + t^4.7 + t^4.8 + 2*t^4.86 + t^4.92 + t^5.03 + t^5.09 + t^5.13 + t^5.15 + t^5.19 + t^5.21 + t^5.25 + t^5.42 + t^5.48 + t^5.54 + 2*t^5.71 + 2*t^5.77 + t^5.83 - 2*t^6. - t^4.43/y - t^4.43*y detail