Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56451 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2^2$ + $ M_4\tilde{q}_1\tilde{q}_2$ + $ M_3M_5$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_1M_7$ 0.6138 0.7955 0.7716 [X:[], M:[0.9535, 0.8023, 0.8605, 1.1395, 1.1395, 0.7675, 1.0465], q:[0.7384, 0.3081], qb:[0.4593, 0.4012], phi:[0.5233]] [X:[], M:[[-4], [26], [-12], [12], [12], [-20], [4]], q:[[-1], [5]], qb:[[-25], [13]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_2$, $ M_6$, $ q_2\tilde{q}_1$, $ M_2$, $ M_7$, $ \phi_1^2$, $ M_4$, $ M_5$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_6^2$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_2M_6$, $ \phi_1q_1q_2$, $ M_2q_2\tilde{q}_1$, $ M_2^2$, $ M_7q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_6M_7$, $ M_6\phi_1^2$, $ M_7q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_2M_7$, $ M_2\phi_1^2$, $ M_4q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_4M_6$, $ M_5M_6$, $ M_6\phi_1q_2^2$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_2M_4$, $ M_2M_5$, $ M_2\phi_1q_2^2$ . -3 t^2.13 + 2*t^2.3 + t^2.41 + 2*t^3.14 + 3*t^3.42 + t^3.87 + t^3.98 + t^4.15 + t^4.26 + t^4.33 + 2*t^4.43 + t^4.53 + 3*t^4.6 + 2*t^4.71 + t^4.81 + 2*t^5.27 + 4*t^5.44 + 4*t^5.55 + 4*t^5.72 + 2*t^5.83 - 3*t^6. + t^6.1 + t^6.17 + 3*t^6.28 + 2*t^6.38 + t^6.45 + 7*t^6.56 + 2*t^6.63 + t^6.66 + 2*t^6.73 + 5*t^6.84 + 4*t^6.91 + t^6.94 + 2*t^7.01 + 2*t^7.12 - t^7.19 + t^7.22 + t^7.29 + 3*t^7.4 + t^7.47 + 2*t^7.57 + 4*t^7.67 + 7*t^7.74 + 4*t^7.85 + 4*t^7.95 + 3*t^8.02 + t^8.2 + 3*t^8.23 - 6*t^8.3 - t^8.41 + 2*t^8.48 + 2*t^8.51 + 3*t^8.58 + t^8.65 + 7*t^8.69 + t^8.76 + 2*t^8.79 + 7*t^8.86 + 3*t^8.93 + 6*t^8.97 - t^4.57/y - t^6.87/y - t^6.98/y + t^7.15/y + (3*t^7.43)/y + t^7.53/y + t^7.6/y + t^7.71/y - t^7.99/y + t^8.16/y + (3*t^8.27)/y + (4*t^8.44)/y + (5*t^8.55)/y + (6*t^8.72)/y + (3*t^8.83)/y - t^4.57*y - t^6.87*y - t^6.98*y + t^7.15*y + 3*t^7.43*y + t^7.53*y + t^7.6*y + t^7.71*y - t^7.99*y + t^8.16*y + 3*t^8.27*y + 4*t^8.44*y + 5*t^8.55*y + 6*t^8.72*y + 3*t^8.83*y g1^18*t^2.13 + (2*t^2.3)/g1^20 + g1^26*t^2.41 + 2*g1^4*t^3.14 + 3*g1^12*t^3.42 + t^3.87/g1^18 + g1^28*t^3.98 + t^4.15/g1^10 + g1^36*t^4.26 + t^4.33/g1^48 + (2*t^4.43)/g1^2 + g1^44*t^4.53 + (3*t^4.6)/g1^40 + 2*g1^6*t^4.71 + g1^52*t^4.81 + 2*g1^22*t^5.27 + (4*t^5.44)/g1^16 + 4*g1^30*t^5.55 + (4*t^5.72)/g1^8 + 2*g1^38*t^5.83 - 3*t^6. + g1^46*t^6.1 + t^6.17/g1^38 + 3*g1^8*t^6.28 + 2*g1^54*t^6.38 + t^6.45/g1^30 + 7*g1^16*t^6.56 + (2*t^6.63)/g1^68 + g1^62*t^6.66 + (2*t^6.73)/g1^22 + 5*g1^24*t^6.84 + (4*t^6.91)/g1^60 + g1^70*t^6.94 + (2*t^7.01)/g1^14 + 2*g1^32*t^7.12 - t^7.19/g1^52 + g1^78*t^7.22 + t^7.29/g1^6 + 3*g1^40*t^7.4 + t^7.47/g1^44 + 2*g1^2*t^7.57 + 4*g1^48*t^7.67 + (7*t^7.74)/g1^36 + 4*g1^10*t^7.85 + 4*g1^56*t^7.95 + (3*t^8.02)/g1^28 + t^8.2/g1^66 + 3*g1^64*t^8.23 - (6*t^8.3)/g1^20 - g1^26*t^8.41 + (2*t^8.48)/g1^58 + 2*g1^72*t^8.51 + (3*t^8.58)/g1^12 + t^8.65/g1^96 + 7*g1^34*t^8.69 + t^8.76/g1^50 + 2*g1^80*t^8.79 + (7*t^8.86)/g1^4 + (3*t^8.93)/g1^88 + 6*g1^42*t^8.97 - (g1^2*t^4.57)/y - t^6.87/(g1^18*y) - (g1^28*t^6.98)/y + t^7.15/(g1^10*y) + (3*t^7.43)/(g1^2*y) + (g1^44*t^7.53)/y + t^7.6/(g1^40*y) + (g1^6*t^7.71)/y - (g1^14*t^7.99)/y + t^8.16/(g1^24*y) + (3*g1^22*t^8.27)/y + (4*t^8.44)/(g1^16*y) + (5*g1^30*t^8.55)/y + (6*t^8.72)/(g1^8*y) + (3*g1^38*t^8.83)/y - g1^2*t^4.57*y - (t^6.87*y)/g1^18 - g1^28*t^6.98*y + (t^7.15*y)/g1^10 + (3*t^7.43*y)/g1^2 + g1^44*t^7.53*y + (t^7.6*y)/g1^40 + g1^6*t^7.71*y - g1^14*t^7.99*y + (t^8.16*y)/g1^24 + 3*g1^22*t^8.27*y + (4*t^8.44*y)/g1^16 + 5*g1^30*t^8.55*y + (6*t^8.72*y)/g1^8 + 3*g1^38*t^8.83*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
52654 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2^2$ + $ M_4\tilde{q}_1\tilde{q}_2$ + $ M_3M_5$ + $ M_6\phi_1q_2\tilde{q}_2$ 0.6182 0.8027 0.7701 [X:[], M:[0.9527, 0.8073, 0.8582, 1.1418, 1.1418, 0.7636], q:[0.7382, 0.3091], qb:[0.4545, 0.4037], phi:[0.5236]] t^2.14 + 2*t^2.29 + t^2.42 + t^2.86 + t^3.14 + 3*t^3.43 + t^3.86 + t^3.99 + t^4.15 + t^4.28 + t^4.3 + 2*t^4.43 + t^4.56 + 3*t^4.58 + 2*t^4.71 + t^4.84 + t^5. + 2*t^5.15 + 2*t^5.28 + 2*t^5.43 + 3*t^5.56 + 5*t^5.72 + 2*t^5.85 - 2*t^6. - t^4.57/y - t^4.57*y detail