Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3932 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4q_1\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_4M_5$ + $ M_6q_1\tilde{q}_2$ + $ M_7\phi_1q_2\tilde{q}_1$ | 0.6138 | 0.7955 | 0.7716 | [X:[], M:[0.9535, 1.1395, 1.0465, 0.8605, 1.1395, 0.8023, 0.7675], q:[0.7384, 0.3081], qb:[0.4012, 0.4593], phi:[0.5233]] | [X:[], M:[[4], [-12], [-4], [12], [-12], [-26], [20]], q:[[1], [-5]], qb:[[-13], [25]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$q_2\tilde{q}_1$, $ M_7$, $ q_2\tilde{q}_2$, $ M_6$, $ M_3$, $ \phi_1^2$, $ M_2$, $ M_5$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_7q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_6q_2\tilde{q}_1$, $ M_7^2$, $ M_7q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_6M_7$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_2$, $ M_6^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_3M_7$, $ M_7\phi_1^2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3M_6$, $ M_6\phi_1^2$, $ M_5q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_2M_7$, $ M_5M_7$, $ M_7\phi_1q_2^2$, $ M_5q_2\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_2M_6$, $ M_5M_6$, $ M_6\phi_1q_2^2$ | . | -3 | t^2.13 + 2*t^2.3 + t^2.41 + 2*t^3.14 + 3*t^3.42 + t^3.87 + t^3.98 + t^4.15 + t^4.26 + t^4.33 + 2*t^4.43 + t^4.53 + 3*t^4.6 + 2*t^4.71 + t^4.81 + 2*t^5.27 + 4*t^5.44 + 4*t^5.55 + 4*t^5.72 + 2*t^5.83 - 3*t^6. + t^6.1 + t^6.17 + 3*t^6.28 + 2*t^6.38 + t^6.45 + 7*t^6.56 + 2*t^6.63 + t^6.66 + 2*t^6.73 + 5*t^6.84 + 4*t^6.91 + t^6.94 + 2*t^7.01 + 2*t^7.12 - t^7.19 + t^7.22 + t^7.29 + 3*t^7.4 + t^7.47 + 2*t^7.57 + 4*t^7.67 + 7*t^7.74 + 4*t^7.85 + 4*t^7.95 + 3*t^8.02 + t^8.2 + 3*t^8.23 - 6*t^8.3 - t^8.41 + 2*t^8.48 + 2*t^8.51 + 3*t^8.58 + t^8.65 + 7*t^8.69 + t^8.76 + 2*t^8.79 + 7*t^8.86 + 3*t^8.93 + 6*t^8.97 - t^4.57/y - t^6.87/y - t^6.98/y + t^7.15/y + (3*t^7.43)/y + t^7.53/y + t^7.6/y + t^7.71/y - t^7.99/y + t^8.16/y + (3*t^8.27)/y + (4*t^8.44)/y + (5*t^8.55)/y + (6*t^8.72)/y + (3*t^8.83)/y - t^4.57*y - t^6.87*y - t^6.98*y + t^7.15*y + 3*t^7.43*y + t^7.53*y + t^7.6*y + t^7.71*y - t^7.99*y + t^8.16*y + 3*t^8.27*y + 4*t^8.44*y + 5*t^8.55*y + 6*t^8.72*y + 3*t^8.83*y | t^2.13/g1^18 + 2*g1^20*t^2.3 + t^2.41/g1^26 + (2*t^3.14)/g1^4 + (3*t^3.42)/g1^12 + g1^18*t^3.87 + t^3.98/g1^28 + g1^10*t^4.15 + t^4.26/g1^36 + g1^48*t^4.33 + 2*g1^2*t^4.43 + t^4.53/g1^44 + 3*g1^40*t^4.6 + (2*t^4.71)/g1^6 + t^4.81/g1^52 + (2*t^5.27)/g1^22 + 4*g1^16*t^5.44 + (4*t^5.55)/g1^30 + 4*g1^8*t^5.72 + (2*t^5.83)/g1^38 - 3*t^6. + t^6.1/g1^46 + g1^38*t^6.17 + (3*t^6.28)/g1^8 + (2*t^6.38)/g1^54 + g1^30*t^6.45 + (7*t^6.56)/g1^16 + 2*g1^68*t^6.63 + t^6.66/g1^62 + 2*g1^22*t^6.73 + (5*t^6.84)/g1^24 + 4*g1^60*t^6.91 + t^6.94/g1^70 + 2*g1^14*t^7.01 + (2*t^7.12)/g1^32 - g1^52*t^7.19 + t^7.22/g1^78 + g1^6*t^7.29 + (3*t^7.4)/g1^40 + g1^44*t^7.47 + (2*t^7.57)/g1^2 + (4*t^7.67)/g1^48 + 7*g1^36*t^7.74 + (4*t^7.85)/g1^10 + (4*t^7.95)/g1^56 + 3*g1^28*t^8.02 + g1^66*t^8.2 + (3*t^8.23)/g1^64 - 6*g1^20*t^8.3 - t^8.41/g1^26 + 2*g1^58*t^8.48 + (2*t^8.51)/g1^72 + 3*g1^12*t^8.58 + g1^96*t^8.65 + (7*t^8.69)/g1^34 + g1^50*t^8.76 + (2*t^8.79)/g1^80 + 7*g1^4*t^8.86 + 3*g1^88*t^8.93 + (6*t^8.97)/g1^42 - t^4.57/(g1^2*y) - (g1^18*t^6.87)/y - t^6.98/(g1^28*y) + (g1^10*t^7.15)/y + (3*g1^2*t^7.43)/y + t^7.53/(g1^44*y) + (g1^40*t^7.6)/y + t^7.71/(g1^6*y) - t^7.99/(g1^14*y) + (g1^24*t^8.16)/y + (3*t^8.27)/(g1^22*y) + (4*g1^16*t^8.44)/y + (5*t^8.55)/(g1^30*y) + (6*g1^8*t^8.72)/y + (3*t^8.83)/(g1^38*y) - (t^4.57*y)/g1^2 - g1^18*t^6.87*y - (t^6.98*y)/g1^28 + g1^10*t^7.15*y + 3*g1^2*t^7.43*y + (t^7.53*y)/g1^44 + g1^40*t^7.6*y + (t^7.71*y)/g1^6 - (t^7.99*y)/g1^14 + g1^24*t^8.16*y + (3*t^8.27*y)/g1^22 + 4*g1^16*t^8.44*y + (5*t^8.55*y)/g1^30 + 6*g1^8*t^8.72*y + (3*t^8.83*y)/g1^38 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
3663 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4q_1\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_4M_5$ + $ M_6q_1\tilde{q}_2$ | 0.5958 | 0.764 | 0.7799 | [X:[], M:[0.9557, 1.1329, 1.0443, 0.8671, 1.1329, 0.7879], q:[0.7389, 0.3054], qb:[0.394, 0.4732], phi:[0.5221]] | t^2.1 + t^2.34 + t^2.36 + 2*t^3.13 + 3*t^3.4 + t^3.66 + t^3.9 + t^3.93 + t^4.17 + t^4.2 + t^4.41 + t^4.43 + t^4.46 + t^4.67 + t^4.7 + t^4.73 + 2*t^5.23 + 2*t^5.47 + 4*t^5.5 + t^5.73 + 3*t^5.76 - 2*t^6. - t^4.57/y - t^4.57*y | detail |