Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56395 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{4}M_{6}$ + ${ }M_{7}\phi_{1}^{2}$ + ${ }M_{8}\phi_{1}\tilde{q}_{2}^{2}$ 0.7345 0.915 0.8027 [M:[0.8878, 0.8326, 0.9724, 1.0276, 1.0, 0.9724, 1.0699, 0.6748], q:[0.5699, 0.5423], qb:[0.5975, 0.4301], phi:[0.465]] [M:[[1, 6], [-1, 2], [-1, -2], [1, 2], [0, 0], [-1, -2], [0, -2], [0, -5]], q:[[0, -2], [-1, -4]], qb:[[1, 0], [0, 2]], phi:[[0, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{8}$, ${ }M_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{6}$, ${ }M_{5}$, ${ }M_{7}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{8}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{8}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{8}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}M_{8}$, ${ }M_{6}M_{8}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{5}M_{8}$, ${ }M_{1}M_{2}$, ${ }M_{7}M_{8}$, ${ }M_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{6}$, ${ }M_{8}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{7}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{2}q_{2}\tilde{q}_{1}$ ${}$ -3 t^2.024 + t^2.498 + t^2.663 + 2*t^2.917 + t^3. + t^3.21 + t^3.419 + t^4.049 + t^4.312 + t^4.395 + t^4.478 + t^4.522 + t^4.649 + t^4.688 + t^4.732 + 2*t^4.815 + t^4.897 + 2*t^4.942 + t^4.98 + t^4.996 + t^5.024 + t^5.161 + t^5.234 + t^5.327 + 2*t^5.415 + t^5.444 + t^5.581 + t^5.708 + 2*t^5.834 + t^5.873 + t^5.917 - 3*t^6. + t^6.073 - t^6.083 + 2*t^6.127 - t^6.166 + t^6.21 + 2*t^6.337 + t^6.419 + t^6.546 + t^6.629 + t^6.673 + t^6.712 + t^6.756 + t^6.81 + 3*t^6.839 + t^6.922 + 2*t^6.966 + t^6.976 + t^7.004 + t^7.02 + t^7.049 + t^7.141 + t^7.147 + 2*t^7.23 + t^7.258 + 3*t^7.312 + t^7.351 + t^7.395 + 2*t^7.439 + t^7.468 + t^7.478 + t^7.493 + 2*t^7.566 + t^7.605 + t^7.643 + 2*t^7.649 + t^7.659 + 4*t^7.732 + t^7.815 + t^7.825 + 2*t^7.859 + 2*t^7.897 + 2*t^7.913 + t^7.942 + t^7.99 - 3*t^8.024 + t^8.068 + t^8.078 + t^8.097 - t^8.107 + 2*t^8.151 - t^8.161 - t^8.19 + t^8.205 + 2*t^8.234 + t^8.244 + 2*t^8.332 + 2*t^8.361 + t^8.371 + t^8.4 + t^8.444 - 3*t^8.498 + t^8.536 + t^8.571 - 2*t^8.581 + 2*t^8.625 + t^8.653 - 4*t^8.663 + t^8.698 + t^8.736 + 2*t^8.752 + t^8.78 + t^8.79 - t^8.829 + t^8.834 + 3*t^8.863 - 7*t^8.917 + t^8.946 + t^8.961 + 2*t^8.99 - t^4.395/y - t^6.419/y - t^6.893/y - t^7.058/y - t^7.312/y + t^7.478/y + t^7.522/y + t^7.688/y + t^7.732/y + t^7.897/y + (2*t^7.942)/y + t^8.024/y + t^8.161/y + t^8.234/y + t^8.371/y + (2*t^8.415)/y + t^8.498/y + (2*t^8.581)/y + t^8.663/y + t^8.708/y + t^8.834/y + t^8.873/y + (2*t^8.917)/y - t^4.395*y - t^6.419*y - t^6.893*y - t^7.058*y - t^7.312*y + t^7.478*y + t^7.522*y + t^7.688*y + t^7.732*y + t^7.897*y + 2*t^7.942*y + t^8.024*y + t^8.161*y + t^8.234*y + t^8.371*y + 2*t^8.415*y + t^8.498*y + 2*t^8.581*y + t^8.663*y + t^8.708*y + t^8.834*y + t^8.873*y + 2*t^8.917*y t^2.024/g2^5 + (g2^2*t^2.498)/g1 + g1*g2^6*t^2.663 + (2*t^2.917)/(g1*g2^2) + t^3. + t^3.21/g2^2 + t^3.419/g2^4 + t^4.049/g2^10 + t^4.312/(g1*g2) + g2*t^4.395 + g1*g2^3*t^4.478 + t^4.522/(g1*g2^3) + t^4.649/(g1^2*g2^7) + g1*g2*t^4.688 + t^4.732/(g1*g2^5) + (2*t^4.815)/g2^3 + (g1*t^4.897)/g2 + (2*t^4.942)/(g1*g2^7) + g1^2*g2*t^4.98 + (g2^4*t^4.996)/g1^2 + t^5.024/g2^5 + g2^8*t^5.161 + t^5.234/g2^7 + g1^2*g2^12*t^5.327 + (2*t^5.415)/g1^2 + t^5.444/g2^9 + g2^4*t^5.581 + t^5.708/g1 + (2*t^5.834)/(g1^2*g2^4) + g1*g2^4*t^5.873 + t^5.917/(g1*g2^2) - 3*t^6. + t^6.073/g2^15 - g1*g2^2*t^6.083 + (2*t^6.127)/(g1*g2^4) - g1^2*g2^4*t^6.166 + t^6.21/g2^2 + (2*t^6.337)/(g1*g2^6) + t^6.419/g2^4 + t^6.546/(g1*g2^8) + t^6.629/g2^6 + t^6.673/(g1^2*g2^12) + (g1*t^6.712)/g2^4 + t^6.756/(g1*g2^10) + (g2*t^6.81)/g1^2 + (3*t^6.839)/g2^8 + (g1*t^6.922)/g2^6 + (2*t^6.966)/(g1*g2^12) + g2^5*t^6.976 + (g1^2*t^7.004)/g2^4 + t^7.02/(g1^2*g2) + t^7.049/g2^10 + g1^2*g2^9*t^7.141 + t^7.147/(g1^3*g2^5) + (2*t^7.23)/(g1^2*g2^3) + t^7.258/g2^12 + (3*t^7.312)/(g1*g2) + g1^2*g2^7*t^7.351 + g2*t^7.395 + (2*t^7.439)/(g1^2*g2^5) + t^7.468/g2^14 + g1*g2^3*t^7.478 + (g2^6*t^7.493)/g1^3 + (2*t^7.566)/(g1^3*g2^9) + t^7.605/g2 + g1^3*g2^7*t^7.643 + (2*t^7.649)/(g1^2*g2^7) + (g2^10*t^7.659)/g1 + (4*t^7.732)/(g1*g2^5) + t^7.815/g2^3 + g1*g2^14*t^7.825 + (2*t^7.859)/(g1^2*g2^9) + (2*g1*t^7.897)/g2 + (2*g2^2*t^7.913)/g1^3 + t^7.942/(g1*g2^7) + g1^3*g2^18*t^7.99 - (3*t^8.024)/g2^5 + t^8.068/(g1^2*g2^11) + (g2^6*t^8.078)/g1 + t^8.097/g2^20 - (g1*t^8.107)/g2^3 + (2*t^8.151)/(g1*g2^9) - g2^8*t^8.161 - (g1^2*t^8.19)/g2 + (g2^2*t^8.205)/g1^2 + (2*t^8.234)/g2^7 + g1*g2^10*t^8.244 + (2*t^8.332)/(g1^3*g2^2) + (2*t^8.361)/(g1*g2^11) + g2^6*t^8.371 + (g1^2*t^8.4)/g2^3 + t^8.444/g2^9 - (3*g2^2*t^8.498)/g1 + g1^2*g2^10*t^8.536 + t^8.571/(g1*g2^13) - 2*g2^4*t^8.581 + (2*t^8.625)/(g1^2*g2^2) + t^8.653/g2^11 - 4*g1*g2^6*t^8.663 + t^8.698/(g1^2*g2^17) + (g1*t^8.736)/g2^9 + (2*t^8.752)/(g1^3*g2^6) + t^8.78/(g1*g2^15) + g2^2*t^8.79 - g1^3*g2^10*t^8.829 + t^8.834/(g1^2*g2^4) + (3*t^8.863)/g2^13 - (7*t^8.917)/(g1*g2^2) + (g1*t^8.946)/g2^11 + t^8.961/(g1^3*g2^8) + (2*t^8.99)/(g1*g2^17) - (g2*t^4.395)/y - t^6.419/(g2^4*y) - (g2^3*t^6.893)/(g1*y) - (g1*g2^7*t^7.058)/y - t^7.312/(g1*g2*y) + (g1*g2^3*t^7.478)/y + t^7.522/(g1*g2^3*y) + (g1*g2*t^7.688)/y + t^7.732/(g1*g2^5*y) + (g1*t^7.897)/(g2*y) + (2*t^7.942)/(g1*g2^7*y) + t^8.024/(g2^5*y) + (g2^8*t^8.161)/y + t^8.234/(g2^7*y) + (g2^6*t^8.371)/y + (2*t^8.415)/(g1^2*y) + (g2^2*t^8.498)/(g1*y) + (2*g2^4*t^8.581)/y + (g1*g2^6*t^8.663)/y + t^8.708/(g1*y) + t^8.834/(g1^2*g2^4*y) + (g1*g2^4*t^8.873)/y + (2*t^8.917)/(g1*g2^2*y) - g2*t^4.395*y - (t^6.419*y)/g2^4 - (g2^3*t^6.893*y)/g1 - g1*g2^7*t^7.058*y - (t^7.312*y)/(g1*g2) + g1*g2^3*t^7.478*y + (t^7.522*y)/(g1*g2^3) + g1*g2*t^7.688*y + (t^7.732*y)/(g1*g2^5) + (g1*t^7.897*y)/g2 + (2*t^7.942*y)/(g1*g2^7) + (t^8.024*y)/g2^5 + g2^8*t^8.161*y + (t^8.234*y)/g2^7 + g2^6*t^8.371*y + (2*t^8.415*y)/g1^2 + (g2^2*t^8.498*y)/g1 + 2*g2^4*t^8.581*y + g1*g2^6*t^8.663*y + (t^8.708*y)/g1 + (t^8.834*y)/(g1^2*g2^4) + g1*g2^4*t^8.873*y + (2*t^8.917*y)/(g1*g2^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
52115 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{4}M_{6}$ + ${ }M_{7}\phi_{1}^{2}$ 0.7137 0.8739 0.8167 [M:[0.8852, 0.83, 0.9724, 1.0276, 1.0, 0.9724, 1.0712], q:[0.5712, 0.5436], qb:[0.5988, 0.4288], phi:[0.4644]] t^2.49 + t^2.656 + 2*t^2.917 + t^3. + t^3.214 + t^3.427 + t^3.966 + t^4.31 + t^4.393 + t^4.476 + t^4.655 + t^4.738 + 2*t^4.82 + t^4.903 + t^4.98 + t^4.986 + t^5.146 + t^5.311 + 2*t^5.407 + t^5.573 + t^5.704 + 2*t^5.834 + t^5.869 + t^5.917 - 3*t^6. - t^4.393/y - t^4.393*y detail