Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
52115 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{4}M_{6}$ + ${ }M_{7}\phi_{1}^{2}$ | 0.7137 | 0.8739 | 0.8167 | [M:[0.8852, 0.83, 0.9724, 1.0276, 1.0, 0.9724, 1.0712], q:[0.5712, 0.5436], qb:[0.5988, 0.4288], phi:[0.4644]] | [M:[[1, 6], [-1, 2], [-1, -2], [1, 2], [0, 0], [-1, -2], [0, -2]], q:[[0, -2], [-1, -4]], qb:[[1, 0], [0, 2]], phi:[[0, 1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{6}$, ${ }M_{5}$, ${ }M_{7}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{6}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{7}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{2}q_{2}\tilde{q}_{1}$ | ${}$ | -3 | t^2.49 + t^2.656 + 2*t^2.917 + t^3. + t^3.214 + t^3.427 + t^3.966 + t^4.31 + t^4.393 + t^4.476 + t^4.655 + t^4.738 + 2*t^4.82 + t^4.903 + t^4.98 + t^4.986 + t^5.146 + t^5.311 + 2*t^5.407 + t^5.573 + t^5.704 + 2*t^5.834 + t^5.869 + t^5.917 - 3*t^6. - t^6.083 + 2*t^6.131 - t^6.166 + t^6.214 + t^6.344 + t^6.456 - t^6.51 + t^6.622 + t^6.641 + t^6.801 + t^6.854 + 2*t^6.883 + 2*t^6.966 + t^7.132 + t^7.145 + 2*t^7.228 + 3*t^7.31 + 2*t^7.393 + t^7.47 + t^7.476 + 2*t^7.572 + t^7.636 + t^7.642 + 2*t^7.655 + 3*t^7.738 + t^7.801 + t^7.82 + 2*t^7.897 + t^7.903 + t^7.932 + t^7.967 + t^8.063 + t^8.082 - t^8.146 + t^8.194 + t^8.228 + t^8.247 + t^8.277 + 2*t^8.325 + 2*t^8.359 + t^8.413 + t^8.442 - 3*t^8.49 + t^8.525 - 2*t^8.573 + 3*t^8.621 - 4*t^8.656 + t^8.704 + 2*t^8.752 + 3*t^8.786 - t^8.821 + t^8.869 - 7*t^8.917 + t^8.946 + t^8.952 + t^8.965 - t^4.393/y - t^6.883/y - t^7.049/y - t^7.31/y + t^7.476/y + t^7.738/y + t^7.903/y + t^8.146/y + (2*t^8.407)/y + t^8.49/y + (2*t^8.573)/y + t^8.656/y + t^8.704/y + t^8.834/y + t^8.869/y + (3*t^8.917)/y - t^4.393*y - t^6.883*y - t^7.049*y - t^7.31*y + t^7.476*y + t^7.738*y + t^7.903*y + t^8.146*y + 2*t^8.407*y + t^8.49*y + 2*t^8.573*y + t^8.656*y + t^8.704*y + t^8.834*y + t^8.869*y + 3*t^8.917*y | (g2^2*t^2.49)/g1 + g1*g2^6*t^2.656 + (2*t^2.917)/(g1*g2^2) + t^3. + t^3.214/g2^2 + t^3.427/g2^4 + g2^5*t^3.966 + t^4.31/(g1*g2) + g2*t^4.393 + g1*g2^3*t^4.476 + t^4.655/(g1^2*g2^7) + t^4.738/(g1*g2^5) + (2*t^4.82)/g2^3 + (g1*t^4.903)/g2 + (g2^4*t^4.98)/g1^2 + g1^2*g2*t^4.986 + g2^8*t^5.146 + g1^2*g2^12*t^5.311 + (2*t^5.407)/g1^2 + g2^4*t^5.573 + t^5.704/g1 + (2*t^5.834)/(g1^2*g2^4) + g1*g2^4*t^5.869 + t^5.917/(g1*g2^2) - 3*t^6. - g1*g2^2*t^6.083 + (2*t^6.131)/(g1*g2^4) - g1^2*g2^4*t^6.166 + t^6.214/g2^2 + t^6.344/(g1*g2^6) + (g2^7*t^6.456)/g1 - (g1*t^6.51)/g2^2 + g1*g2^11*t^6.622 + t^6.641/g2^6 + (g2*t^6.801)/g1^2 + t^6.854/g2^8 + (2*g2^3*t^6.883)/g1 + 2*g2^5*t^6.966 + g1^2*g2^9*t^7.132 + t^7.145/(g1^3*g2^5) + (2*t^7.228)/(g1^2*g2^3) + (3*t^7.31)/(g1*g2) + 2*g2*t^7.393 + (g2^6*t^7.47)/g1^3 + g1*g2^3*t^7.476 + (2*t^7.572)/(g1^3*g2^9) + (g2^10*t^7.636)/g1 + g1^3*g2^7*t^7.642 + (2*t^7.655)/(g1^2*g2^7) + (3*t^7.738)/(g1*g2^5) + g1*g2^14*t^7.801 + t^7.82/g2^3 + (2*g2^2*t^7.897)/g1^3 + (g1*t^7.903)/g2 + g2^10*t^7.932 + g1^3*g2^18*t^7.967 + (g2^6*t^8.063)/g1 + t^8.082/(g1^2*g2^11) - g2^8*t^8.146 + (g2^2*t^8.194)/g1^2 + g1*g2^10*t^8.228 + t^8.247/g2^7 + (g2^4*t^8.277)/g1 + (2*t^8.325)/(g1^3*g2^2) + 2*g2^6*t^8.359 + (g1^2*t^8.413)/g2^3 + g1*g2^8*t^8.442 - (3*g2^2*t^8.49)/g1 + g1^2*g2^10*t^8.525 - 2*g2^4*t^8.573 + (3*t^8.621)/(g1^2*g2^2) - 4*g1*g2^6*t^8.656 + t^8.704/g1 + (2*t^8.752)/(g1^3*g2^6) + 3*g2^2*t^8.786 - g1^3*g2^10*t^8.821 + g1*g2^4*t^8.869 - (7*t^8.917)/(g1*g2^2) + (g2^9*t^8.946)/g1^2 + g1^2*g2^6*t^8.952 + t^8.965/(g1^3*g2^8) - (g2*t^4.393)/y - (g2^3*t^6.883)/(g1*y) - (g1*g2^7*t^7.049)/y - t^7.31/(g1*g2*y) + (g1*g2^3*t^7.476)/y + t^7.738/(g1*g2^5*y) + (g1*t^7.903)/(g2*y) + (g2^8*t^8.146)/y + (2*t^8.407)/(g1^2*y) + (g2^2*t^8.49)/(g1*y) + (2*g2^4*t^8.573)/y + (g1*g2^6*t^8.656)/y + t^8.704/(g1*y) + t^8.834/(g1^2*g2^4*y) + (g1*g2^4*t^8.869)/y + (3*t^8.917)/(g1*g2^2*y) - g2*t^4.393*y - (g2^3*t^6.883*y)/g1 - g1*g2^7*t^7.049*y - (t^7.31*y)/(g1*g2) + g1*g2^3*t^7.476*y + (t^7.738*y)/(g1*g2^5) + (g1*t^7.903*y)/g2 + g2^8*t^8.146*y + (2*t^8.407*y)/g1^2 + (g2^2*t^8.49*y)/g1 + 2*g2^4*t^8.573*y + g1*g2^6*t^8.656*y + (t^8.704*y)/g1 + (t^8.834*y)/(g1^2*g2^4) + g1*g2^4*t^8.869*y + (3*t^8.917*y)/(g1*g2^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
56395 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{4}M_{6}$ + ${ }M_{7}\phi_{1}^{2}$ + ${ }M_{8}\phi_{1}\tilde{q}_{2}^{2}$ | 0.7345 | 0.915 | 0.8027 | [M:[0.8878, 0.8326, 0.9724, 1.0276, 1.0, 0.9724, 1.0699, 0.6748], q:[0.5699, 0.5423], qb:[0.5975, 0.4301], phi:[0.465]] | t^2.024 + t^2.498 + t^2.663 + 2*t^2.917 + t^3. + t^3.21 + t^3.419 + t^4.049 + t^4.312 + t^4.395 + t^4.478 + t^4.522 + t^4.649 + t^4.688 + t^4.732 + 2*t^4.815 + t^4.897 + 2*t^4.942 + t^4.98 + t^4.996 + t^5.024 + t^5.161 + t^5.234 + t^5.327 + 2*t^5.415 + t^5.444 + t^5.581 + t^5.708 + 2*t^5.834 + t^5.873 + t^5.917 - 3*t^6. - t^4.395/y - t^4.395*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
48147 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{4}M_{6}$ | 0.7207 | 0.8863 | 0.8132 | [M:[0.8653, 0.8101, 0.9724, 1.0276, 1.0, 0.9724], q:[0.5812, 0.5536], qb:[0.6087, 0.4188], phi:[0.4594]] | t^2.43 + t^2.596 + t^2.757 + 2*t^2.917 + t^3. + t^3.487 + t^3.891 + t^4.295 + t^4.378 + t^4.461 + t^4.7 + t^4.782 + t^4.861 + 2*t^4.865 + t^4.948 + t^5.026 + t^5.031 + t^5.187 + t^5.192 + 2*t^5.348 + t^5.352 + 2*t^5.513 + 2*t^5.674 + t^5.757 + 2*t^5.834 + t^5.917 - 3*t^6. - t^4.378/y - t^4.378*y | detail |