Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56372 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_2X_1$ + $ M_4\phi_1q_1q_2$ + $ M_5\phi_1q_1^2$ + $ M_6q_2\tilde{q}_1$ + $ M_7q_1\tilde{q}_1$ + $ M_8q_2\tilde{q}_2$ 0.6805 0.87 0.7822 [X:[1.6], M:[1.2, 0.4, 0.8, 0.8, 0.7839, 0.7839, 0.7678, 0.8322], q:[0.4081, 0.3919], qb:[0.8242, 0.7758], phi:[0.4]] [X:[[0, 0]], M:[[0, 0], [0, 0], [0, 0], [0, 0], [2, 0], [-1, 1], [1, 1], [-1, -1]], q:[[-1, 0], [1, 0]], qb:[[0, -1], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_7$, $ M_5$, $ M_6$, $ M_3$, $ M_4$, $ \phi_1^2$, $ M_8$, $ \phi_1q_2^2$, $ q_1\tilde{q}_2$, $ M_7^2$, $ M_5M_7$, $ M_6M_7$, $ M_5^2$, $ M_5M_6$, $ M_3M_7$, $ M_4M_7$, $ M_7\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_6^2$, $ M_3M_5$, $ M_4M_5$, $ M_5\phi_1^2$, $ M_3M_6$, $ M_4M_6$, $ M_6\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ M_7M_8$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ \phi_1^4$, $ X_1$, $ M_6M_8$, $ M_5M_8$, $ \phi_1q_2\tilde{q}_1$, $ M_3M_8$, $ M_4M_8$, $ M_8\phi_1^2$, $ \phi_1q_1\tilde{q}_1$, $ M_8^2$, $ M_7\phi_1q_2^2$, $ M_7q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_5\phi_1q_2^2$, $ M_6\phi_1q_2^2$, $ M_5q_1\tilde{q}_2$, $ M_6q_1\tilde{q}_2$, $ M_3\phi_1q_2^2$, $ M_4\phi_1q_2^2$, $ \phi_1^3q_2^2$, $ M_3q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$ . -3 t^2.3 + 2*t^2.35 + 3*t^2.4 + t^2.5 + 2*t^3.55 + t^4.61 + 2*t^4.66 + 6*t^4.7 + 6*t^4.75 + 8*t^4.8 + 2*t^4.85 + 3*t^4.9 + t^4.99 + 2*t^5.86 + 3*t^5.9 + 4*t^5.95 - 3*t^6. - t^6.1 + t^6.91 + 2*t^6.96 + 6*t^7.01 + 10*t^7.06 + 18*t^7.1 + 12*t^7.15 + 14*t^7.2 + 2*t^7.25 + 6*t^7.3 + 2*t^7.34 + 3*t^7.39 + t^7.49 + 2*t^8.16 + 3*t^8.21 + 8*t^8.26 + t^8.3 - 12*t^8.4 - 6*t^8.45 - 7*t^8.5 - t^8.59 - t^4.2/y - t^6.5/y - (2*t^6.55)/y - (2*t^6.6)/y - t^6.7/y + (2*t^7.66)/y + (5*t^7.7)/y + (6*t^7.75)/y + (6*t^7.8)/y + (4*t^7.85)/y + (4*t^7.9)/y - t^8.81/y - t^8.9/y + (2*t^8.95)/y - t^4.2*y - t^6.5*y - 2*t^6.55*y - 2*t^6.6*y - t^6.7*y + 2*t^7.66*y + 5*t^7.7*y + 6*t^7.75*y + 6*t^7.8*y + 4*t^7.85*y + 4*t^7.9*y - t^8.81*y - t^8.9*y + 2*t^8.95*y g1*g2*t^2.3 + g1^2*t^2.35 + (g2*t^2.35)/g1 + 3*t^2.4 + t^2.5/(g1*g2) + g1^2*t^3.55 + (g2*t^3.55)/g1 + g1^2*g2^2*t^4.61 + g1^3*g2*t^4.66 + g2^2*t^4.66 + g1^4*t^4.7 + 4*g1*g2*t^4.7 + (g2^2*t^4.7)/g1^2 + 3*g1^2*t^4.75 + (3*g2*t^4.75)/g1 + 8*t^4.8 + t^4.85/g1^2 + (g1*t^4.85)/g2 + (3*t^4.9)/(g1*g2) + t^4.99/(g1^2*g2^2) + g1^3*g2*t^5.86 + g2^2*t^5.86 + g1^4*t^5.9 + g1*g2*t^5.9 + (g2^2*t^5.9)/g1^2 + 2*g1^2*t^5.95 + (2*g2*t^5.95)/g1 - 3*t^6. - t^6.1/(g1*g2) + g1^3*g2^3*t^6.91 + g1^4*g2^2*t^6.96 + g1*g2^3*t^6.96 + g1^5*g2*t^7.01 + 4*g1^2*g2^2*t^7.01 + (g2^3*t^7.01)/g1 + g1^6*t^7.06 + 4*g1^3*g2*t^7.06 + 4*g2^2*t^7.06 + (g2^3*t^7.06)/g1^3 + 4*g1^4*t^7.1 + 10*g1*g2*t^7.1 + (4*g2^2*t^7.1)/g1^2 + 6*g1^2*t^7.15 + (6*g2*t^7.15)/g1 + 12*t^7.2 + (g1^3*t^7.2)/g2 + (g2*t^7.2)/g1^3 + t^7.25/g1^2 + (g1*t^7.25)/g2 + (6*t^7.3)/(g1*g2) + t^7.34/g2^2 + t^7.34/(g1^3*g2) + (3*t^7.39)/(g1^2*g2^2) + t^7.49/(g1^3*g2^3) + g1^4*g2^2*t^8.16 + g1*g2^3*t^8.16 + g1^5*g2*t^8.21 + g1^2*g2^2*t^8.21 + (g2^3*t^8.21)/g1 + g1^6*t^8.26 + 3*g1^3*g2*t^8.26 + 3*g2^2*t^8.26 + (g2^3*t^8.26)/g1^3 + 2*g1^4*t^8.3 - 3*g1*g2*t^8.3 + (2*g2^2*t^8.3)/g1^2 - 12*t^8.4 - (3*t^8.45)/g1^2 - (3*g1*t^8.45)/g2 - (7*t^8.5)/(g1*g2) - t^8.59/(g1^2*g2^2) - t^4.2/y - (g1*g2*t^6.5)/y - (g1^2*t^6.55)/y - (g2*t^6.55)/(g1*y) - (2*t^6.6)/y - t^6.7/(g1*g2*y) + (g1^3*g2*t^7.66)/y + (g2^2*t^7.66)/y + (5*g1*g2*t^7.7)/y + (3*g1^2*t^7.75)/y + (3*g2*t^7.75)/(g1*y) + (6*t^7.8)/y + (2*t^7.85)/(g1^2*y) + (2*g1*t^7.85)/(g2*y) + (4*t^7.9)/(g1*g2*y) - (g1^2*g2^2*t^8.81)/y - (g1*g2*t^8.9)/y + (g1^2*t^8.95)/y + (g2*t^8.95)/(g1*y) - t^4.2*y - g1*g2*t^6.5*y - g1^2*t^6.55*y - (g2*t^6.55*y)/g1 - 2*t^6.6*y - (t^6.7*y)/(g1*g2) + g1^3*g2*t^7.66*y + g2^2*t^7.66*y + 5*g1*g2*t^7.7*y + 3*g1^2*t^7.75*y + (3*g2*t^7.75*y)/g1 + 6*t^7.8*y + (2*t^7.85*y)/g1^2 + (2*g1*t^7.85*y)/g2 + (4*t^7.9*y)/(g1*g2) - g1^2*g2^2*t^8.81*y - g1*g2*t^8.9*y + g1^2*t^8.95*y + (g2*t^8.95*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
51000 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_2X_1$ + $ M_4\phi_1q_1q_2$ + $ M_5\phi_1q_1^2$ + $ M_6q_2\tilde{q}_1$ + $ M_7q_1\tilde{q}_1$ 0.6676 0.852 0.7836 [X:[1.6], M:[1.2, 0.4, 0.8, 0.8, 0.7625, 0.7625, 0.7249], q:[0.4188, 0.3812], qb:[0.8563, 0.7437], phi:[0.4]] t^2.17 + 2*t^2.29 + 3*t^2.4 + t^3.37 + 2*t^3.49 + t^4.35 + 2*t^4.46 + 6*t^4.57 + 6*t^4.69 + 7*t^4.8 + t^5.55 + 4*t^5.66 + 6*t^5.77 + 4*t^5.89 - 3*t^6. - t^4.2/y - t^4.2*y detail