Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5484 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}X_{1}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{7}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{8}\phi_{1}q_{1}^{2}$ 0.6805 0.87 0.7822 [X:[1.6], M:[0.7678, 0.8322, 1.2, 0.4, 0.8, 0.7839, 0.8, 0.7839], q:[0.4081, 0.8242], qb:[0.3919, 0.7758], phi:[0.4]] [X:[[0]], M:[[4], [-4], [0], [0], [0], [2], [0], [2]], q:[[-1], [-3]], qb:[[1], [3]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{6}$, ${ }M_{8}$, ${ }M_{5}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{8}$, ${ }M_{1}M_{5}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{6}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{5}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }X_{1}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{8}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{7}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{8}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{8}q_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$ ${}$ -3 t^2.303 + 2*t^2.352 + 3*t^2.4 + t^2.497 + 2*t^3.552 + t^4.607 + 2*t^4.655 + 6*t^4.703 + 6*t^4.752 + 8*t^4.8 + 2*t^4.848 + 3*t^4.897 + t^4.993 + 2*t^5.855 + 3*t^5.903 + 4*t^5.952 - 3*t^6. - t^6.097 + t^6.91 + 2*t^6.958 + 6*t^7.007 + 10*t^7.055 + 18*t^7.103 + 12*t^7.152 + 14*t^7.2 + 2*t^7.248 + 6*t^7.297 + 2*t^7.345 + 3*t^7.393 + t^7.49 + 2*t^8.158 + 3*t^8.207 + 8*t^8.255 + t^8.303 - 12*t^8.4 - 6*t^8.448 - 7*t^8.497 - t^8.593 - t^4.2/y - t^6.503/y - (2*t^6.552)/y - (2*t^6.6)/y - t^6.697/y + (2*t^7.655)/y + (5*t^7.703)/y + (6*t^7.752)/y + (6*t^7.8)/y + (4*t^7.848)/y + (4*t^7.897)/y - t^8.807/y - t^8.903/y + (2*t^8.952)/y - t^4.2*y - t^6.503*y - 2*t^6.552*y - 2*t^6.6*y - t^6.697*y + 2*t^7.655*y + 5*t^7.703*y + 6*t^7.752*y + 6*t^7.8*y + 4*t^7.848*y + 4*t^7.897*y - t^8.807*y - t^8.903*y + 2*t^8.952*y g1^4*t^2.303 + 2*g1^2*t^2.352 + 3*t^2.4 + t^2.497/g1^4 + 2*g1^2*t^3.552 + g1^8*t^4.607 + 2*g1^6*t^4.655 + 6*g1^4*t^4.703 + 6*g1^2*t^4.752 + 8*t^4.8 + (2*t^4.848)/g1^2 + (3*t^4.897)/g1^4 + t^4.993/g1^8 + 2*g1^6*t^5.855 + 3*g1^4*t^5.903 + 4*g1^2*t^5.952 - 3*t^6. - t^6.097/g1^4 + g1^12*t^6.91 + 2*g1^10*t^6.958 + 6*g1^8*t^7.007 + 10*g1^6*t^7.055 + 18*g1^4*t^7.103 + 12*g1^2*t^7.152 + 14*t^7.2 + (2*t^7.248)/g1^2 + (6*t^7.297)/g1^4 + (2*t^7.345)/g1^6 + (3*t^7.393)/g1^8 + t^7.49/g1^12 + 2*g1^10*t^8.158 + 3*g1^8*t^8.207 + 8*g1^6*t^8.255 + g1^4*t^8.303 - 12*t^8.4 - (6*t^8.448)/g1^2 - (7*t^8.497)/g1^4 - t^8.593/g1^8 - t^4.2/y - (g1^4*t^6.503)/y - (2*g1^2*t^6.552)/y - (2*t^6.6)/y - t^6.697/(g1^4*y) + (2*g1^6*t^7.655)/y + (5*g1^4*t^7.703)/y + (6*g1^2*t^7.752)/y + (6*t^7.8)/y + (4*t^7.848)/(g1^2*y) + (4*t^7.897)/(g1^4*y) - (g1^8*t^8.807)/y - (g1^4*t^8.903)/y + (2*g1^2*t^8.952)/y - t^4.2*y - g1^4*t^6.503*y - 2*g1^2*t^6.552*y - 2*t^6.6*y - (t^6.697*y)/g1^4 + 2*g1^6*t^7.655*y + 5*g1^4*t^7.703*y + 6*g1^2*t^7.752*y + 6*t^7.8*y + (4*t^7.848*y)/g1^2 + (4*t^7.897*y)/g1^4 - g1^8*t^8.807*y - g1^4*t^8.903*y + 2*g1^2*t^8.952*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3909 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}X_{1}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{7}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ 0.6633 0.8388 0.7907 [X:[1.6], M:[0.7831, 0.8169, 1.2, 0.4, 0.8, 0.7915, 0.8], q:[0.4042, 0.8127], qb:[0.3958, 0.7873], phi:[0.4]] t^2.349 + t^2.375 + 3*t^2.4 + t^2.451 + 2*t^3.575 + t^3.625 + t^4.699 + t^4.724 + 4*t^4.749 + 3*t^4.775 + 8*t^4.8 + t^4.825 + 3*t^4.851 + t^4.901 + 2*t^5.924 + t^5.949 + 5*t^5.975 - 2*t^6. - t^4.2/y - t^4.2*y detail