Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55892 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_5^2$ + $ M_3M_4$ + $ M_4M_6$ + $ M_7\phi_1\tilde{q}_2^2$ 0.7413 0.9257 0.8008 [X:[], M:[0.8732, 0.818, 0.9724, 1.0276, 1.0, 0.9724, 0.693], q:[0.5772, 0.5496], qb:[0.6048, 0.4228], phi:[0.4614]] [X:[], M:[[1, 6], [-1, 2], [-1, -2], [1, 2], [0, 0], [-1, -2], [0, -5]], q:[[0, -2], [-1, -4]], qb:[[1, 0], [0, 2]], phi:[[0, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_7$, $ M_2$, $ M_1$, $ \phi_1^2$, $ M_3$, $ M_6$, $ M_5$, $ q_2\tilde{q}_1$, $ M_7^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2M_7$, $ \phi_1q_2^2$, $ M_1M_7$, $ \phi_1q_1q_2$, $ M_7\phi_1^2$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_1$, $ M_2^2$, $ \phi_1q_1\tilde{q}_1$, $ M_3M_7$, $ M_6M_7$, $ \phi_1\tilde{q}_1^2$, $ M_1M_2$, $ M_5M_7$, $ M_2\phi_1^2$, $ M_1^2$, $ M_2M_3$, $ M_2M_6$, $ M_1\phi_1^2$, $ M_7q_2\tilde{q}_1$, $ M_1M_3$, $ M_1M_6$, $ \phi_1^4$, $ M_3\phi_1^2$, $ M_6\phi_1^2$, $ M_5\phi_1^2$, $ M_3^2$, $ M_3M_6$, $ M_6^2$, $ M_3M_5$, $ M_5M_6$, $ M_2q_2\tilde{q}_1$ . -3 t^2.08 + t^2.45 + t^2.62 + t^2.77 + 2*t^2.92 + t^3. + t^3.46 + t^4.16 + t^4.3 + t^4.38 + t^4.47 + t^4.53 + t^4.68 + t^4.7 + t^4.76 + 3*t^4.85 + t^4.91 + t^4.93 + 2*t^5. + t^5.01 + t^5.07 + t^5.08 + t^5.22 + t^5.24 + 2*t^5.37 + t^5.39 + 3*t^5.54 + 2*t^5.69 + t^5.77 + 2*t^5.83 + t^5.92 - 3*t^6. - t^6.08 - t^6.17 + t^6.23 + t^6.24 + 2*t^6.38 + t^6.61 + 2*t^6.76 + t^6.78 + t^6.84 + t^6.92 + 4*t^6.93 + t^6.99 + t^7.01 + t^7.07 + 2*t^7.08 + 2*t^7.09 + t^7.14 + t^7.15 + t^7.16 + 2*t^7.22 + t^7.24 + 4*t^7.3 + t^7.32 + t^7.36 + t^7.38 + 3*t^7.45 + 2*t^7.47 + t^7.53 + 2*t^7.6 + 4*t^7.62 + t^7.63 + 3*t^7.68 + t^7.69 + 5*t^7.76 + t^7.78 + 2*t^7.83 + t^7.84 + 2*t^7.85 + t^7.86 + t^7.91 + t^7.93 + 2*t^7.99 + t^8.01 - t^8.07 - 5*t^8.08 + 2*t^8.14 + t^8.15 - 2*t^8.24 + 2*t^8.29 + 4*t^8.31 + t^8.32 - t^8.45 + 2*t^8.46 + t^8.48 - t^8.54 + 2*t^8.6 - 4*t^8.62 + 2*t^8.69 + 2*t^8.75 - 3*t^8.77 - t^8.78 + t^8.83 + t^8.84 - t^8.85 + t^8.86 - 7*t^8.92 - t^8.93 + t^8.98 - t^4.38/y - t^6.46/y - t^6.84/y - t^7./y - t^7.15/y - t^7.3/y + t^7.47/y + t^7.53/y + t^7.62/y + t^7.7/y + t^7.76/y + t^7.85/y + t^7.93/y + (2*t^8.)/y + t^8.07/y + t^8.08/y + t^8.22/y + t^8.31/y + (2*t^8.37)/y + t^8.39/y + t^8.45/y + (2*t^8.54)/y + t^8.62/y + (2*t^8.69)/y + t^8.77/y + t^8.83/y + (2*t^8.92)/y - t^4.38*y - t^6.46*y - t^6.84*y - t^7.*y - t^7.15*y - t^7.3*y + t^7.47*y + t^7.53*y + t^7.62*y + t^7.7*y + t^7.76*y + t^7.85*y + t^7.93*y + 2*t^8.*y + t^8.07*y + t^8.08*y + t^8.22*y + t^8.31*y + 2*t^8.37*y + t^8.39*y + t^8.45*y + 2*t^8.54*y + t^8.62*y + 2*t^8.69*y + t^8.77*y + t^8.83*y + 2*t^8.92*y t^2.08/g2^5 + (g2^2*t^2.45)/g1 + g1*g2^6*t^2.62 + g2^2*t^2.77 + (2*t^2.92)/(g1*g2^2) + t^3. + t^3.46/g2^4 + t^4.16/g2^10 + t^4.3/(g1*g2) + g2*t^4.38 + g1*g2^3*t^4.47 + t^4.53/(g1*g2^3) + t^4.68/(g1^2*g2^7) + g1*g2*t^4.7 + t^4.76/(g1*g2^5) + (3*t^4.85)/g2^3 + (g2^4*t^4.91)/g1^2 + (g1*t^4.93)/g2 + (2*t^5.)/(g1*g2^7) + g1^2*g2*t^5.01 + g2^8*t^5.07 + t^5.08/g2^5 + (g2^4*t^5.22)/g1 + g1^2*g2^12*t^5.24 + (2*t^5.37)/g1^2 + g1*g2^8*t^5.39 + t^5.54/g2^9 + 2*g2^4*t^5.54 + (2*t^5.69)/g1 + g2^2*t^5.77 + (2*t^5.83)/(g1^2*g2^4) + t^5.92/(g1*g2^2) - 3*t^6. - g1*g2^2*t^6.08 - g1^2*g2^4*t^6.17 + t^6.23/g2^2 + t^6.24/g2^15 + (2*t^6.38)/(g1*g2^6) + t^6.61/(g1*g2^8) + t^6.76/(g1^2*g2^12) + (g2*t^6.76)/g1^2 + (g1*t^6.78)/g2^4 + t^6.84/(g1*g2^10) + g2^5*t^6.92 + (4*t^6.93)/g2^8 + t^6.99/(g1^2*g2) + (g1*t^7.01)/g2^6 + (g2*t^7.07)/g1 + (2*t^7.08)/(g1*g2^12) + (g1^2*t^7.09)/g2^4 + g1^2*g2^9*t^7.09 + t^7.14/(g1^3*g2^5) + g2^3*t^7.15 + t^7.16/g2^10 + (2*t^7.22)/(g1^2*g2^3) + g1*g2^5*t^7.24 + (4*t^7.3)/(g1*g2) + g1^2*g2^7*t^7.32 + (g2^6*t^7.36)/g1^3 + g2*t^7.38 + (3*t^7.45)/(g1^2*g2^5) + 2*g1*g2^3*t^7.47 + (g2^10*t^7.53)/g1 + (2*t^7.6)/(g1^3*g2^9) + t^7.62/g2^14 + (3*t^7.62)/g2 + g1^3*g2^7*t^7.63 + (2*t^7.68)/(g1^2*g2^7) + (g2^6*t^7.68)/g1^2 + g1*g2^14*t^7.69 + (5*t^7.76)/(g1*g2^5) + g1^2*g2^3*t^7.78 + (2*g2^2*t^7.83)/g1^3 + g2^10*t^7.84 + (2*t^7.85)/g2^3 + g1^3*g2^18*t^7.86 + t^7.91/(g1^2*g2^9) + (g1*t^7.93)/g2 + (2*g2^6*t^7.99)/g1 + g1^2*g2^14*t^8.01 - g2^8*t^8.07 - (5*t^8.08)/g2^5 + (2*g2^2*t^8.14)/g1^2 + t^8.15/(g1^2*g2^11) - (2*g1*t^8.16)/g2^3 + 2*g1*g2^10*t^8.16 - (2*g1^2*t^8.24)/g2 + (2*t^8.29)/(g1^3*g2^2) + (2*t^8.31)/g2^7 + 2*g2^6*t^8.31 + t^8.32/g2^20 - (g2^2*t^8.45)/g1 + (2*t^8.46)/(g1*g2^11) + (g1^2*t^8.48)/g2^3 - g2^4*t^8.54 + (2*t^8.6)/(g1^2*g2^2) - 4*g1*g2^6*t^8.62 + t^8.69/g1 + t^8.69/(g1*g2^13) + (2*t^8.75)/(g1^3*g2^6) - 3*g2^2*t^8.77 - g1^3*g2^10*t^8.78 + t^8.83/(g1^2*g2^4) + t^8.84/(g1^2*g2^17) - g1*g2^4*t^8.85 + (g1*t^8.86)/g2^9 + t^8.92/(g1*g2^15) - (8*t^8.92)/(g1*g2^2) - g1^2*g2^6*t^8.93 + t^8.98/(g1^3*g2^8) - (g2*t^4.38)/y - t^6.46/(g2^4*y) - (g2^3*t^6.84)/(g1*y) - (g1*g2^7*t^7.)/y - (g2^3*t^7.15)/y - t^7.3/(g1*g2*y) + (g1*g2^3*t^7.47)/y + t^7.53/(g1*g2^3*y) + t^7.62/(g2*y) + (g1*g2*t^7.7)/y + t^7.76/(g1*g2^5*y) + t^7.85/(g2^3*y) + (g1*t^7.93)/(g2*y) + (2*t^8.)/(g1*g2^7*y) + (g2^8*t^8.07)/y + t^8.08/(g2^5*y) + (g2^4*t^8.22)/(g1*y) + (g2^6*t^8.31)/y + (2*t^8.37)/(g1^2*y) + (g1*g2^8*t^8.39)/y + (g2^2*t^8.45)/(g1*y) + (2*g2^4*t^8.54)/y + (g1*g2^6*t^8.62)/y + (2*t^8.69)/(g1*y) + (g2^2*t^8.77)/y + t^8.83/(g1^2*g2^4*y) + (2*t^8.92)/(g1*g2^2*y) - g2*t^4.38*y - (t^6.46*y)/g2^4 - (g2^3*t^6.84*y)/g1 - g1*g2^7*t^7.*y - g2^3*t^7.15*y - (t^7.3*y)/(g1*g2) + g1*g2^3*t^7.47*y + (t^7.53*y)/(g1*g2^3) + (t^7.62*y)/g2 + g1*g2*t^7.7*y + (t^7.76*y)/(g1*g2^5) + (t^7.85*y)/g2^3 + (g1*t^7.93*y)/g2 + (2*t^8.*y)/(g1*g2^7) + g2^8*t^8.07*y + (t^8.08*y)/g2^5 + (g2^4*t^8.22*y)/g1 + g2^6*t^8.31*y + (2*t^8.37*y)/g1^2 + g1*g2^8*t^8.39*y + (g2^2*t^8.45*y)/g1 + 2*g2^4*t^8.54*y + g1*g2^6*t^8.62*y + (2*t^8.69*y)/g1 + g2^2*t^8.77*y + (t^8.83*y)/(g1^2*g2^4) + (2*t^8.92*y)/(g1*g2^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
48147 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_5^2$ + $ M_3M_4$ + $ M_4M_6$ 0.7207 0.8863 0.8132 [X:[], M:[0.8653, 0.8101, 0.9724, 1.0276, 1.0, 0.9724], q:[0.5812, 0.5536], qb:[0.6087, 0.4188], phi:[0.4594]] t^2.43 + t^2.6 + t^2.76 + 2*t^2.92 + t^3. + t^3.49 + t^3.89 + t^4.3 + t^4.38 + t^4.46 + t^4.7 + t^4.78 + t^4.86 + 2*t^4.87 + t^4.95 + 2*t^5.03 + 2*t^5.19 + 3*t^5.35 + 2*t^5.51 + 2*t^5.67 + t^5.76 + 2*t^5.83 + t^5.92 - 3*t^6. - t^4.38/y - t^4.38*y detail