Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55892 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{4}M_{6}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ 0.7413 0.9257 0.8008 [M:[0.8732, 0.818, 0.9724, 1.0276, 1.0, 0.9724, 0.693], q:[0.5772, 0.5496], qb:[0.6048, 0.4228], phi:[0.4614]] [M:[[1, 6], [-1, 2], [-1, -2], [1, 2], [0, 0], [-1, -2], [0, -5]], q:[[0, -2], [-1, -4]], qb:[[1, 0], [0, 2]], phi:[[0, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{6}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{7}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}M_{7}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{5}M_{7}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{2}q_{2}\tilde{q}_{1}$ ${}$ -3 t^2.079 + t^2.454 + t^2.619 + t^2.768 + 2*t^2.917 + t^3. + t^3.463 + t^4.158 + t^4.301 + t^4.384 + t^4.467 + t^4.533 + t^4.682 + t^4.699 + t^4.765 + 3*t^4.847 + t^4.908 + t^4.93 + 2*t^4.996 + t^5.013 + t^5.073 + t^5.079 + t^5.222 + t^5.239 + 2*t^5.371 + t^5.388 + 2*t^5.537 + t^5.542 + 2*t^5.686 + t^5.768 + 2*t^5.834 + t^5.917 - 3*t^6. - t^6.083 - t^6.166 + t^6.232 + t^6.237 + 2*t^6.381 + t^6.612 + t^6.755 + t^6.761 + t^6.778 + t^6.844 + t^6.921 + 4*t^6.927 + t^6.987 + t^7.009 + t^7.07 + 2*t^7.076 + t^7.086 + t^7.092 + t^7.136 + t^7.153 + t^7.158 + 2*t^7.219 + t^7.235 + 4*t^7.301 + t^7.318 + t^7.362 + t^7.384 + 3*t^7.45 + 2*t^7.467 + t^7.527 + 2*t^7.599 + 3*t^7.616 + t^7.622 + t^7.632 + t^7.676 + 2*t^7.682 + t^7.693 + 5*t^7.765 + t^7.781 + 2*t^7.825 + t^7.842 + 2*t^7.847 + t^7.858 + t^7.914 + t^7.93 + 2*t^7.991 + t^8.007 - t^8.073 - 5*t^8.079 + 2*t^8.14 + t^8.145 + 2*t^8.156 - 2*t^8.162 - 2*t^8.245 + 2*t^8.288 + 2*t^8.305 + 2*t^8.311 + t^8.317 - t^8.454 + 2*t^8.46 + t^8.476 - t^8.537 + 2*t^8.603 - 4*t^8.619 + t^8.686 + t^8.691 + 2*t^8.752 - 3*t^8.768 - t^8.785 + t^8.834 + t^8.84 - t^8.851 + t^8.857 - 8*t^8.917 + t^8.923 - t^8.934 + t^8.983 - t^4.384/y - t^6.463/y - t^6.838/y - t^7.004/y - t^7.153/y - t^7.301/y + t^7.467/y + t^7.533/y + t^7.616/y + t^7.699/y + t^7.765/y + t^7.847/y + t^7.93/y + (2*t^7.996)/y + t^8.073/y + t^8.079/y + t^8.222/y + t^8.305/y + (2*t^8.371)/y + t^8.388/y + t^8.454/y + (2*t^8.537)/y + t^8.619/y + (2*t^8.686)/y + t^8.768/y + t^8.834/y + (2*t^8.917)/y - t^4.384*y - t^6.463*y - t^6.838*y - t^7.004*y - t^7.153*y - t^7.301*y + t^7.467*y + t^7.533*y + t^7.616*y + t^7.699*y + t^7.765*y + t^7.847*y + t^7.93*y + 2*t^7.996*y + t^8.073*y + t^8.079*y + t^8.222*y + t^8.305*y + 2*t^8.371*y + t^8.388*y + t^8.454*y + 2*t^8.537*y + t^8.619*y + 2*t^8.686*y + t^8.768*y + t^8.834*y + 2*t^8.917*y t^2.079/g2^5 + (g2^2*t^2.454)/g1 + g1*g2^6*t^2.619 + g2^2*t^2.768 + (2*t^2.917)/(g1*g2^2) + t^3. + t^3.463/g2^4 + t^4.158/g2^10 + t^4.301/(g1*g2) + g2*t^4.384 + g1*g2^3*t^4.467 + t^4.533/(g1*g2^3) + t^4.682/(g1^2*g2^7) + g1*g2*t^4.699 + t^4.765/(g1*g2^5) + (3*t^4.847)/g2^3 + (g2^4*t^4.908)/g1^2 + (g1*t^4.93)/g2 + (2*t^4.996)/(g1*g2^7) + g1^2*g2*t^5.013 + g2^8*t^5.073 + t^5.079/g2^5 + (g2^4*t^5.222)/g1 + g1^2*g2^12*t^5.239 + (2*t^5.371)/g1^2 + g1*g2^8*t^5.388 + 2*g2^4*t^5.537 + t^5.542/g2^9 + (2*t^5.686)/g1 + g2^2*t^5.768 + (2*t^5.834)/(g1^2*g2^4) + t^5.917/(g1*g2^2) - 3*t^6. - g1*g2^2*t^6.083 - g1^2*g2^4*t^6.166 + t^6.232/g2^2 + t^6.237/g2^15 + (2*t^6.381)/(g1*g2^6) + t^6.612/(g1*g2^8) + (g2*t^6.755)/g1^2 + t^6.761/(g1^2*g2^12) + (g1*t^6.778)/g2^4 + t^6.844/(g1*g2^10) + g2^5*t^6.921 + (4*t^6.927)/g2^8 + t^6.987/(g1^2*g2) + (g1*t^7.009)/g2^6 + (g2*t^7.07)/g1 + (2*t^7.076)/(g1*g2^12) + g1^2*g2^9*t^7.086 + (g1^2*t^7.092)/g2^4 + t^7.136/(g1^3*g2^5) + g2^3*t^7.153 + t^7.158/g2^10 + (2*t^7.219)/(g1^2*g2^3) + g1*g2^5*t^7.235 + (4*t^7.301)/(g1*g2) + g1^2*g2^7*t^7.318 + (g2^6*t^7.362)/g1^3 + g2*t^7.384 + (3*t^7.45)/(g1^2*g2^5) + 2*g1*g2^3*t^7.467 + (g2^10*t^7.527)/g1 + (2*t^7.599)/(g1^3*g2^9) + (3*t^7.616)/g2 + t^7.622/g2^14 + g1^3*g2^7*t^7.632 + (g2^6*t^7.676)/g1^2 + (2*t^7.682)/(g1^2*g2^7) + g1*g2^14*t^7.693 + (5*t^7.765)/(g1*g2^5) + g1^2*g2^3*t^7.781 + (2*g2^2*t^7.825)/g1^3 + g2^10*t^7.842 + (2*t^7.847)/g2^3 + g1^3*g2^18*t^7.858 + t^7.914/(g1^2*g2^9) + (g1*t^7.93)/g2 + (2*g2^6*t^7.991)/g1 + g1^2*g2^14*t^8.007 - g2^8*t^8.073 - (5*t^8.079)/g2^5 + (2*g2^2*t^8.14)/g1^2 + t^8.145/(g1^2*g2^11) + 2*g1*g2^10*t^8.156 - (2*g1*t^8.162)/g2^3 - (2*g1^2*t^8.245)/g2 + (2*t^8.288)/(g1^3*g2^2) + 2*g2^6*t^8.305 + (2*t^8.311)/g2^7 + t^8.317/g2^20 - (g2^2*t^8.454)/g1 + (2*t^8.46)/(g1*g2^11) + (g1^2*t^8.476)/g2^3 - g2^4*t^8.537 + (2*t^8.603)/(g1^2*g2^2) - 4*g1*g2^6*t^8.619 + t^8.686/g1 + t^8.691/(g1*g2^13) + (2*t^8.752)/(g1^3*g2^6) - 3*g2^2*t^8.768 - g1^3*g2^10*t^8.785 + t^8.834/(g1^2*g2^4) + t^8.84/(g1^2*g2^17) - g1*g2^4*t^8.851 + (g1*t^8.857)/g2^9 - (8*t^8.917)/(g1*g2^2) + t^8.923/(g1*g2^15) - g1^2*g2^6*t^8.934 + t^8.983/(g1^3*g2^8) - (g2*t^4.384)/y - t^6.463/(g2^4*y) - (g2^3*t^6.838)/(g1*y) - (g1*g2^7*t^7.004)/y - (g2^3*t^7.153)/y - t^7.301/(g1*g2*y) + (g1*g2^3*t^7.467)/y + t^7.533/(g1*g2^3*y) + t^7.616/(g2*y) + (g1*g2*t^7.699)/y + t^7.765/(g1*g2^5*y) + t^7.847/(g2^3*y) + (g1*t^7.93)/(g2*y) + (2*t^7.996)/(g1*g2^7*y) + (g2^8*t^8.073)/y + t^8.079/(g2^5*y) + (g2^4*t^8.222)/(g1*y) + (g2^6*t^8.305)/y + (2*t^8.371)/(g1^2*y) + (g1*g2^8*t^8.388)/y + (g2^2*t^8.454)/(g1*y) + (2*g2^4*t^8.537)/y + (g1*g2^6*t^8.619)/y + (2*t^8.686)/(g1*y) + (g2^2*t^8.768)/y + t^8.834/(g1^2*g2^4*y) + (2*t^8.917)/(g1*g2^2*y) - g2*t^4.384*y - (t^6.463*y)/g2^4 - (g2^3*t^6.838*y)/g1 - g1*g2^7*t^7.004*y - g2^3*t^7.153*y - (t^7.301*y)/(g1*g2) + g1*g2^3*t^7.467*y + (t^7.533*y)/(g1*g2^3) + (t^7.616*y)/g2 + g1*g2*t^7.699*y + (t^7.765*y)/(g1*g2^5) + (t^7.847*y)/g2^3 + (g1*t^7.93*y)/g2 + (2*t^7.996*y)/(g1*g2^7) + g2^8*t^8.073*y + (t^8.079*y)/g2^5 + (g2^4*t^8.222*y)/g1 + g2^6*t^8.305*y + (2*t^8.371*y)/g1^2 + g1*g2^8*t^8.388*y + (g2^2*t^8.454*y)/g1 + 2*g2^4*t^8.537*y + g1*g2^6*t^8.619*y + (2*t^8.686*y)/g1 + g2^2*t^8.768*y + (t^8.834*y)/(g1^2*g2^4) + (2*t^8.917*y)/(g1*g2^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57519 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{4}M_{6}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{7}q_{2}\tilde{q}_{1}$ 0.7343 0.9166 0.8011 [M:[0.8054, 0.7502, 0.9724, 1.0276, 1.0, 0.9724, 0.7778], q:[0.6111, 0.5835], qb:[0.6387, 0.3889], phi:[0.4444]] t^2.251 + t^2.333 + t^2.416 + t^2.667 + 2*t^2.917 + t^3. + t^3.667 + t^4.251 + t^4.333 + t^4.416 + t^4.501 + t^4.584 + 2*t^4.667 + t^4.749 + t^4.832 + t^4.834 + 2*t^4.917 + 3*t^5. + 2*t^5.083 + t^5.166 + 2*t^5.168 + 2*t^5.251 + 3*t^5.333 + 2*t^5.584 + t^5.667 + 2*t^5.834 + t^5.917 - 2*t^6. - t^4.333/y - t^4.333*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
48147 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{4}M_{6}$ 0.7207 0.8863 0.8132 [M:[0.8653, 0.8101, 0.9724, 1.0276, 1.0, 0.9724], q:[0.5812, 0.5536], qb:[0.6087, 0.4188], phi:[0.4594]] t^2.43 + t^2.596 + t^2.757 + 2*t^2.917 + t^3. + t^3.487 + t^3.891 + t^4.295 + t^4.378 + t^4.461 + t^4.7 + t^4.782 + t^4.861 + 2*t^4.865 + t^4.948 + t^5.026 + t^5.031 + t^5.187 + t^5.192 + 2*t^5.348 + t^5.352 + 2*t^5.513 + 2*t^5.674 + t^5.757 + 2*t^5.834 + t^5.917 - 3*t^6. - t^4.378/y - t^4.378*y detail