Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1416 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{7}$ | 0.7413 | 0.9257 | 0.8008 | [M:[0.818, 1.0276, 0.9724, 0.8732, 1.0, 0.693, 0.9724], q:[0.6048, 0.5772], qb:[0.4228, 0.5496], phi:[0.4614]] | [M:[[6, 1], [-2, -1], [2, 1], [2, -1], [0, 0], [-5, 0], [2, 1]], q:[[-4, -1], [-2, 0]], qb:[[2, 0], [0, 1]], phi:[[1, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }M_{1}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{7}$, ${ }M_{5}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{6}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}^{4}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{7}$ | ${}$ | -3 | t^2.079 + t^2.454 + t^2.619 + t^2.768 + 2*t^2.917 + t^3. + t^3.463 + t^4.158 + t^4.301 + t^4.384 + t^4.467 + t^4.533 + t^4.682 + t^4.699 + t^4.765 + 3*t^4.847 + t^4.908 + t^4.93 + 2*t^4.996 + t^5.013 + t^5.073 + t^5.079 + t^5.222 + t^5.239 + 2*t^5.371 + t^5.388 + 2*t^5.537 + t^5.542 + 2*t^5.686 + t^5.768 + 2*t^5.834 + t^5.917 - 3*t^6. - t^6.083 - t^6.166 + t^6.232 + t^6.237 + 2*t^6.381 + t^6.612 + t^6.755 + t^6.761 + t^6.778 + t^6.844 + t^6.921 + 4*t^6.927 + t^6.987 + t^7.009 + t^7.07 + 2*t^7.076 + t^7.086 + t^7.092 + t^7.136 + t^7.153 + t^7.158 + 2*t^7.219 + t^7.235 + 4*t^7.301 + t^7.318 + t^7.362 + t^7.384 + 3*t^7.45 + 2*t^7.467 + t^7.527 + 2*t^7.599 + 3*t^7.616 + t^7.622 + t^7.632 + t^7.676 + 2*t^7.682 + t^7.693 + 5*t^7.765 + t^7.781 + 2*t^7.825 + t^7.842 + 2*t^7.847 + t^7.858 + t^7.914 + t^7.93 + 2*t^7.991 + t^8.007 - t^8.073 - 5*t^8.079 + 2*t^8.14 + t^8.145 + 2*t^8.156 - 2*t^8.162 - 2*t^8.245 + 2*t^8.288 + 2*t^8.305 + 2*t^8.311 + t^8.317 - t^8.454 + 2*t^8.46 + t^8.476 - t^8.537 + 2*t^8.603 - 4*t^8.619 + t^8.686 + t^8.691 + 2*t^8.752 - 3*t^8.768 - t^8.785 + t^8.834 + t^8.84 - t^8.851 + t^8.857 - 8*t^8.917 + t^8.923 - t^8.934 + t^8.983 - t^4.384/y - t^6.463/y - t^6.838/y - t^7.004/y - t^7.153/y - t^7.301/y + t^7.467/y + t^7.533/y + t^7.616/y + t^7.699/y + t^7.765/y + t^7.847/y + t^7.93/y + (2*t^7.996)/y + t^8.073/y + t^8.079/y + t^8.222/y + t^8.305/y + (2*t^8.371)/y + t^8.388/y + t^8.454/y + (2*t^8.537)/y + t^8.619/y + (2*t^8.686)/y + t^8.768/y + t^8.834/y + (2*t^8.917)/y - t^4.384*y - t^6.463*y - t^6.838*y - t^7.004*y - t^7.153*y - t^7.301*y + t^7.467*y + t^7.533*y + t^7.616*y + t^7.699*y + t^7.765*y + t^7.847*y + t^7.93*y + 2*t^7.996*y + t^8.073*y + t^8.079*y + t^8.222*y + t^8.305*y + 2*t^8.371*y + t^8.388*y + t^8.454*y + 2*t^8.537*y + t^8.619*y + 2*t^8.686*y + t^8.768*y + t^8.834*y + 2*t^8.917*y | t^2.079/g1^5 + g1^6*g2*t^2.454 + (g1^2*t^2.619)/g2 + g1^2*t^2.768 + 2*g1^2*g2*t^2.917 + t^3. + t^3.463/g1^4 + t^4.158/g1^10 + g1^3*g2*t^4.301 + g1*t^4.384 + t^4.467/(g1*g2) + g1*g2*t^4.533 + g1*g2^2*t^4.682 + t^4.699/(g1^3*g2) + (g2*t^4.765)/g1 + (3*t^4.847)/g1^3 + g1^12*g2^2*t^4.908 + t^4.93/(g1^5*g2) + (2*g2*t^4.996)/g1^3 + t^5.013/(g1^7*g2^2) + g1^8*t^5.073 + t^5.079/g1^5 + g1^8*g2*t^5.222 + (g1^4*t^5.239)/g2^2 + 2*g1^8*g2^2*t^5.371 + (g1^4*t^5.388)/g2 + 2*g1^4*t^5.537 + t^5.542/g1^9 + 2*g1^4*g2*t^5.686 + g1^2*t^5.768 + 2*g1^4*g2^2*t^5.834 + g1^2*g2*t^5.917 - 3*t^6. - t^6.083/(g1^2*g2) - t^6.166/(g1^4*g2^2) + t^6.232/g1^2 + t^6.237/g1^15 + (2*g2*t^6.381)/g1^2 + (g2*t^6.612)/g1^4 + g1^9*g2^2*t^6.755 + (g2^2*t^6.761)/g1^4 + t^6.778/(g1^8*g2) + (g2*t^6.844)/g1^6 + g1^5*t^6.921 + (4*t^6.927)/g1^8 + g1^7*g2^2*t^6.987 + t^7.009/(g1^10*g2) + g1^5*g2*t^7.07 + (2*g2*t^7.076)/g1^8 + (g1*t^7.086)/g2^2 + t^7.092/(g1^12*g2^2) + g1^7*g2^3*t^7.136 + g1^3*t^7.153 + t^7.158/g1^10 + 2*g1^5*g2^2*t^7.219 + (g1*t^7.235)/g2 + 4*g1^3*g2*t^7.301 + t^7.318/(g1*g2^2) + g1^18*g2^3*t^7.362 + g1*t^7.384 + 3*g1^3*g2^2*t^7.45 + (2*t^7.467)/(g1*g2) + g1^14*g2*t^7.527 + 2*g1^3*g2^3*t^7.599 + (3*t^7.616)/g1 + t^7.622/g1^14 + t^7.632/(g1^5*g2^3) + g1^14*g2^2*t^7.676 + 2*g1*g2^2*t^7.682 + (g1^10*t^7.693)/g2 + (5*g2*t^7.765)/g1 + t^7.781/(g1^5*g2^2) + 2*g1^14*g2^3*t^7.825 + g1^10*t^7.842 + (2*t^7.847)/g1^3 + (g1^6*t^7.858)/g2^3 + (g2^2*t^7.914)/g1 + t^7.93/(g1^5*g2) + 2*g1^10*g2*t^7.991 + (g1^6*t^8.007)/g2^2 - g1^8*t^8.073 - (5*t^8.079)/g1^5 + 2*g1^10*g2^2*t^8.14 + (g2^2*t^8.145)/g1^3 + (2*g1^6*t^8.156)/g2 - (2*t^8.162)/(g1^7*g2) - (2*t^8.245)/(g1^9*g2^2) + 2*g1^10*g2^3*t^8.288 + 2*g1^6*t^8.305 + (2*t^8.311)/g1^7 + t^8.317/g1^20 - g1^6*g2*t^8.454 + (2*g2*t^8.46)/g1^7 + t^8.476/(g1^11*g2^2) - g1^4*t^8.537 + 2*g1^6*g2^2*t^8.603 - (4*g1^2*t^8.619)/g2 + g1^4*g2*t^8.686 + (g2*t^8.691)/g1^9 + 2*g1^6*g2^3*t^8.752 - 3*g1^2*t^8.768 - t^8.785/(g1^2*g2^3) + g1^4*g2^2*t^8.834 + (g2^2*t^8.84)/g1^9 - t^8.851/g2 + t^8.857/(g1^13*g2) - 8*g1^2*g2*t^8.917 + (g2*t^8.923)/g1^11 - t^8.934/(g1^2*g2^2) + g1^4*g2^3*t^8.983 - (g1*t^4.384)/y - t^6.463/(g1^4*y) - (g1^7*g2*t^6.838)/y - (g1^3*t^7.004)/(g2*y) - (g1^3*t^7.153)/y - (g1^3*g2*t^7.301)/y + t^7.467/(g1*g2*y) + (g1*g2*t^7.533)/y + t^7.616/(g1*y) + t^7.699/(g1^3*g2*y) + (g2*t^7.765)/(g1*y) + t^7.847/(g1^3*y) + t^7.93/(g1^5*g2*y) + (2*g2*t^7.996)/(g1^3*y) + (g1^8*t^8.073)/y + t^8.079/(g1^5*y) + (g1^8*g2*t^8.222)/y + (g1^6*t^8.305)/y + (2*g1^8*g2^2*t^8.371)/y + (g1^4*t^8.388)/(g2*y) + (g1^6*g2*t^8.454)/y + (2*g1^4*t^8.537)/y + (g1^2*t^8.619)/(g2*y) + (2*g1^4*g2*t^8.686)/y + (g1^2*t^8.768)/y + (g1^4*g2^2*t^8.834)/y + (2*g1^2*g2*t^8.917)/y - g1*t^4.384*y - (t^6.463*y)/g1^4 - g1^7*g2*t^6.838*y - (g1^3*t^7.004*y)/g2 - g1^3*t^7.153*y - g1^3*g2*t^7.301*y + (t^7.467*y)/(g1*g2) + g1*g2*t^7.533*y + (t^7.616*y)/g1 + (t^7.699*y)/(g1^3*g2) + (g2*t^7.765*y)/g1 + (t^7.847*y)/g1^3 + (t^7.93*y)/(g1^5*g2) + (2*g2*t^7.996*y)/g1^3 + g1^8*t^8.073*y + (t^8.079*y)/g1^5 + g1^8*g2*t^8.222*y + g1^6*t^8.305*y + 2*g1^8*g2^2*t^8.371*y + (g1^4*t^8.388*y)/g2 + g1^6*g2*t^8.454*y + 2*g1^4*t^8.537*y + (g1^2*t^8.619*y)/g2 + 2*g1^4*g2*t^8.686*y + g1^2*t^8.768*y + g1^4*g2^2*t^8.834*y + 2*g1^2*g2*t^8.917*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
2475 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{7}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ | 0.6078 | 0.7619 | 0.7977 | [X:[1.5891], M:[0.4109, 1.2328, 0.7672, 0.8766, 1.0, 0.9453, 0.7672], q:[0.9109, 0.6781], qb:[0.3219, 0.4453], phi:[0.4109]] | 2*t^2.301 + t^2.466 + t^2.63 + t^2.836 + t^3. + t^3.534 + t^3.904 + t^4.069 + 3*t^4.603 + 3*t^4.767 + 3*t^4.931 + t^5.096 + 2*t^5.137 + t^5.26 + 3*t^5.301 + t^5.466 + t^5.672 + 2*t^5.836 - t^6. - t^4.233/y - t^4.233*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
923 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ | 0.74 | 0.9227 | 0.802 | [M:[0.8456, 1.0, 1.0, 0.8456, 1.0, 0.693], q:[0.5772, 0.5772], qb:[0.4228, 0.5772], phi:[0.4614]] | t^2.079 + 2*t^2.537 + t^2.768 + 3*t^3. + t^3.463 + t^4.158 + 3*t^4.384 + 2*t^4.616 + 7*t^4.847 + 3*t^5.073 + 3*t^5.079 + 2*t^5.305 + 4*t^5.537 + t^5.542 + 3*t^5.768 - 2*t^6. - t^4.384/y - t^4.384*y | detail |