Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55724 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{3}^{2}$ + ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{3}$ | 0.8608 | 1.0504 | 0.8195 | [M:[0.8291, 0.6971], q:[0.7346, 0.7535, 0.7441], qb:[0.5855, 0.5855, 0.5493], phi:[0.5119]] | [M:[[0, -5, -5, 0], [-1, 0, 0, -5]], q:[[-1, 2, 2, 2], [1, 0, 0, 0], [0, 1, 1, 1]], qb:[[0, 5, 0, 0], [0, 0, 5, 0], [0, 0, 0, 5]], phi:[[0, -2, -2, -2]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{3}$, ${ }q_{1}q_{2}$, ${ }q_{2}q_{3}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{3}$ | ${}$ | -6 | t^2.091 + t^2.487 + t^3.071 + 2*t^3.404 + t^3.852 + t^3.88 + 2*t^3.96 + 2*t^3.989 + 2*t^4.017 + t^4.183 + t^4.436 + t^4.464 + t^4.493 + t^4.579 + t^4.832 + 2*t^4.94 + t^4.974 + 3*t^5.048 + t^5.163 + 2*t^5.496 + t^5.559 + t^5.943 - 6*t^6. - t^6.028 + 2*t^6.052 + 2*t^6.08 + t^6.143 + t^6.274 + t^6.339 + t^6.367 + 2*t^6.476 + t^6.527 - t^6.613 + t^6.67 + 3*t^6.809 + 2*t^6.923 + t^6.952 + 2*t^7.032 + t^7.066 + 3*t^7.14 + t^7.254 + 2*t^7.256 + 2*t^7.285 + t^7.319 + 3*t^7.365 + 3*t^7.393 + 3*t^7.421 + t^7.462 - t^7.536 + 2*t^7.587 - 2*t^7.644 + t^7.65 + t^7.704 + t^7.732 + 2*t^7.812 + 4*t^7.84 + 2*t^7.869 + 2*t^7.897 + t^7.903 + 3*t^7.92 + 3*t^7.949 + 3*t^7.977 + 3*t^8.006 + 2*t^8.011 + 3*t^8.034 + t^8.035 + t^8.046 - 6*t^8.091 + 2*t^8.12 + 2*t^8.143 + 2*t^8.171 + t^8.234 + 2*t^8.236 + t^8.288 + t^8.316 + 3*t^8.345 + t^8.366 + 2*t^8.396 + 2*t^8.425 + t^8.43 + 6*t^8.453 + 2*t^8.481 - 3*t^8.487 + 2*t^8.51 - t^8.516 + 2*t^8.567 + t^8.619 + t^8.63 + t^8.684 + t^8.712 + t^8.761 + 2*t^8.792 + 2*t^8.82 + t^8.826 + t^8.855 + 6*t^8.9 + 3*t^8.929 - t^4.536/y - t^6.627/y - t^7.023/y + t^7.464/y + t^7.579/y - t^7.607/y + t^8.048/y + t^8.163/y + t^8.444/y + (2*t^8.496)/y + t^8.559/y - t^8.718/y + (2*t^8.892)/y + t^8.943/y + t^8.972/y - t^4.536*y - t^6.627*y - t^7.023*y + t^7.464*y + t^7.579*y - t^7.607*y + t^8.048*y + t^8.163*y + t^8.444*y + 2*t^8.496*y + t^8.559*y - t^8.718*y + 2*t^8.892*y + t^8.943*y + t^8.972*y | t^2.091/(g1*g4^5) + t^2.487/(g2^5*g3^5) + t^3.071/(g2^4*g3^4*g4^4) + g2^5*g4^5*t^3.404 + g3^5*g4^5*t^3.404 + (g2^2*g3^2*g4^7*t^3.852)/g1 + g2*g3*g4^6*t^3.88 + (g2^7*g3^2*g4^2*t^3.96)/g1 + (g2^2*g3^7*g4^2*t^3.96)/g1 + g2^6*g3*g4*t^3.989 + g2*g3^6*g4*t^3.989 + g1*g2^5*t^4.017 + g1*g3^5*t^4.017 + t^4.183/(g1^2*g4^10) + (g2^3*g3^3*g4^3*t^4.436)/g1 + g2^2*g3^2*g4^2*t^4.464 + g1*g2*g3*g4*t^4.493 + t^4.579/(g1*g2^5*g3^5*g4^5) + (g4^8*t^4.832)/(g2^2*g3^2) + (g2^3*g4^3*t^4.94)/g3^2 + (g3^3*g4^3*t^4.94)/g2^2 + t^4.974/(g2^10*g3^10) + (g2^8*t^5.048)/(g3^2*g4^2) + (g2^3*g3^3*t^5.048)/g4^2 + (g3^8*t^5.048)/(g2^2*g4^2) + t^5.163/(g1*g2^4*g3^4*g4^9) + (g2^5*t^5.496)/g1 + (g3^5*t^5.496)/g1 + t^5.559/(g2^9*g3^9*g4^4) + (g2^2*g3^2*g4^2*t^5.943)/g1^2 - 4*t^6. - (g2^5*t^6.)/g3^5 - (g3^5*t^6.)/g2^5 - (g1*t^6.028)/(g2*g3*g4) + (g2^7*g3^2*t^6.052)/(g1^2*g4^3) + (g2^2*g3^7*t^6.052)/(g1^2*g4^3) + (g2^6*g3*t^6.08)/(g1*g4^4) + (g2*g3^6*t^6.08)/(g1*g4^4) + t^6.143/(g2^8*g3^8*g4^8) + t^6.274/(g1^3*g4^15) + (g4^7*t^6.339)/(g1*g2^3*g3^3) + (g4^6*t^6.367)/(g2^4*g3^4) + (g2*g4*t^6.476)/g3^4 + (g3*g4*t^6.476)/g2^4 + (g2^3*g3^3*t^6.527)/(g1^2*g4^2) - (g1*t^6.613)/g4^5 + t^6.67/(g1^2*g2^5*g3^5*g4^10) + g2^10*g4^10*t^6.809 + g2^5*g3^5*g4^10*t^6.809 + g3^10*g4^10*t^6.809 + (2*g4^3*t^6.923)/(g1*g2^2*g3^2) + (g4^2*t^6.952)/(g2^3*g3^3) + (g2^3*t^7.032)/(g1*g3^2*g4^2) + (g3^3*t^7.032)/(g1*g2^2*g4^2) + t^7.066/(g1*g2^10*g3^10*g4^5) + (g2^8*t^7.14)/(g1*g3^2*g4^7) + (g2^3*g3^3*t^7.14)/(g1*g4^7) + (g3^8*t^7.14)/(g1*g2^2*g4^7) + t^7.254/(g1^2*g2^4*g3^4*g4^14) + (g2^7*g3^2*g4^12*t^7.256)/g1 + (g2^2*g3^7*g4^12*t^7.256)/g1 + g2^6*g3*g4^11*t^7.285 + g2*g3^6*g4^11*t^7.285 + (g4^8*t^7.319)/(g2^7*g3^7) + (g2^12*g3^2*g4^7*t^7.365)/g1 + (g2^7*g3^7*g4^7*t^7.365)/g1 + (g2^2*g3^12*g4^7*t^7.365)/g1 + g2^11*g3*g4^6*t^7.393 + g2^6*g3^6*g4^6*t^7.393 + g2*g3^11*g4^6*t^7.393 + g1*g2^10*g4^5*t^7.421 + g1*g2^5*g3^5*g4^5*t^7.421 + g1*g3^10*g4^5*t^7.421 + t^7.462/(g2^15*g3^15) - t^7.536/(g2^2*g3^2*g4^2) + (g2^5*t^7.587)/(g1^2*g4^5) + (g3^5*t^7.587)/(g1^2*g4^5) - (g2^3*t^7.644)/(g3^2*g4^7) - (g3^3*t^7.644)/(g2^2*g4^7) + t^7.65/(g1*g2^9*g3^9*g4^9) + (g2^4*g3^4*g4^14*t^7.704)/g1^2 + (g2^3*g3^3*g4^13*t^7.732)/g1 + (g2^9*g3^4*g4^9*t^7.812)/g1^2 + (g2^4*g3^9*g4^9*t^7.812)/g1^2 + (2*g2^8*g3^3*g4^8*t^7.84)/g1 + (2*g2^3*g3^8*g4^8*t^7.84)/g1 + g2^7*g3^2*g4^7*t^7.869 + g2^2*g3^7*g4^7*t^7.869 + g1*g2^6*g3*g4^6*t^7.897 + g1*g2*g3^6*g4^6*t^7.897 + (g4^4*t^7.903)/(g2^6*g3^6) + (g2^14*g3^4*g4^4*t^7.92)/g1^2 + (g2^9*g3^9*g4^4*t^7.92)/g1^2 + (g2^4*g3^14*g4^4*t^7.92)/g1^2 + (g2^13*g3^3*g4^3*t^7.949)/g1 + (g2^8*g3^8*g4^3*t^7.949)/g1 + (g2^3*g3^13*g4^3*t^7.949)/g1 + g2^12*g3^2*g4^2*t^7.977 + g2^7*g3^7*g4^2*t^7.977 + g2^2*g3^12*g4^2*t^7.977 + g1*g2^11*g3*g4*t^8.006 + g1*g2^6*g3^6*g4*t^8.006 + g1*g2*g3^11*g4*t^8.006 + t^8.011/(g2*g3^6*g4) + t^8.011/(g2^6*g3*g4) + g1^2*g2^10*t^8.034 + g1^2*g2^5*g3^5*t^8.034 + g1^2*g3^10*t^8.034 + (g2^2*g3^2*t^8.035)/(g1^3*g4^3) + t^8.046/(g2^14*g3^14*g4^4) - (4*t^8.091)/(g1*g4^5) - (g2^5*t^8.091)/(g1*g3^5*g4^5) - (g3^5*t^8.091)/(g1*g2^5*g4^5) + (g2^4*t^8.12)/(g3^6*g4^6) + (g3^4*t^8.12)/(g2^6*g4^6) + (g2^7*g3^2*t^8.143)/(g1^3*g4^8) + (g2^2*g3^7*t^8.143)/(g1^3*g4^8) + (g2^6*g3*t^8.171)/(g1^2*g4^9) + (g2*g3^6*t^8.171)/(g1^2*g4^9) + t^8.234/(g1*g2^8*g3^8*g4^13) + (g2^3*g4^13*t^8.236)/g3^2 + (g3^3*g4^13*t^8.236)/g2^2 + (g2^5*g3^5*g4^10*t^8.288)/g1^2 + (g2^4*g3^4*g4^9*t^8.316)/g1 + (g2^8*g4^8*t^8.345)/g3^2 + g2^3*g3^3*g4^8*t^8.345 + (g3^8*g4^8*t^8.345)/g2^2 + t^8.366/(g1^4*g4^20) + (g2^10*g3^5*g4^5*t^8.396)/g1^2 + (g2^5*g3^10*g4^5*t^8.396)/g1^2 + (g2^9*g3^4*g4^4*t^8.425)/g1 + (g2^4*g3^9*g4^4*t^8.425)/g1 + (g4^2*t^8.43)/(g1^2*g2^3*g3^3) + (g2^13*g4^3*t^8.453)/g3^2 + 2*g2^8*g3^3*g4^3*t^8.453 + 2*g2^3*g3^8*g4^3*t^8.453 + (g3^13*g4^3*t^8.453)/g2^2 + g1*g2^7*g3^2*g4^2*t^8.481 + g1*g2^2*g3^7*g4^2*t^8.481 - (3*t^8.487)/(g2^5*g3^5) + g1^2*g2^6*g3*g4*t^8.51 + g1^2*g2*g3^6*g4*t^8.51 - (g1*t^8.516)/(g2^6*g3^6*g4) + (g2*t^8.567)/(g1*g3^4*g4^4) + (g3*t^8.567)/(g1*g2^4*g4^4) + (g2^3*g3^3*t^8.619)/(g1^3*g4^7) + t^8.63/(g2^13*g3^13*g4^8) + (g4^15*t^8.684)/g1 + (g4^14*t^8.712)/(g2*g3) + t^8.761/(g1^3*g2^5*g3^5*g4^15) + (g2^5*g4^10*t^8.792)/g1 + (g3^5*g4^10*t^8.792)/g1 + (g2^4*g4^9*t^8.82)/g3 + (g3^4*g4^9*t^8.82)/g2 + (g4^7*t^8.826)/(g1*g2^8*g3^8) + (g4^6*t^8.855)/(g2^9*g3^9) + (2*g2^10*g4^5*t^8.9)/g1 + (2*g2^5*g3^5*g4^5*t^8.9)/g1 + (2*g3^10*g4^5*t^8.9)/g1 + (g2^9*g4^4*t^8.929)/g3 + g2^4*g3^4*g4^4*t^8.929 + (g3^9*g4^4*t^8.929)/g2 - t^4.536/(g2^2*g3^2*g4^2*y) - t^6.627/(g1*g2^2*g3^2*g4^7*y) - t^7.023/(g2^7*g3^7*g4^2*y) + (g2^2*g3^2*g4^2*t^7.464)/y + t^7.579/(g1*g2^5*g3^5*g4^5*y) - t^7.607/(g2^6*g3^6*g4^6*y) + (g2^3*g3^3*t^8.048)/(g4^2*y) + t^8.163/(g1*g2^4*g3^4*g4^9*y) + (g1*g4^3*t^8.444)/(g2^2*g3^2*y) + (g2^5*t^8.496)/(g1*y) + (g3^5*t^8.496)/(g1*y) + t^8.559/(g2^9*g3^9*g4^4*y) - t^8.718/(g1^2*g2^2*g3^2*g4^12*y) + (g4^5*t^8.892)/(g2^5*y) + (g4^5*t^8.892)/(g3^5*y) + (g2^2*g3^2*g4^2*t^8.943)/(g1^2*y) + (g2*g3*g4*t^8.972)/(g1*y) - (t^4.536*y)/(g2^2*g3^2*g4^2) - (t^6.627*y)/(g1*g2^2*g3^2*g4^7) - (t^7.023*y)/(g2^7*g3^7*g4^2) + g2^2*g3^2*g4^2*t^7.464*y + (t^7.579*y)/(g1*g2^5*g3^5*g4^5) - (t^7.607*y)/(g2^6*g3^6*g4^6) + (g2^3*g3^3*t^8.048*y)/g4^2 + (t^8.163*y)/(g1*g2^4*g3^4*g4^9) + (g1*g4^3*t^8.444*y)/(g2^2*g3^2) + (g2^5*t^8.496*y)/g1 + (g3^5*t^8.496*y)/g1 + (t^8.559*y)/(g2^9*g3^9*g4^4) - (t^8.718*y)/(g1^2*g2^2*g3^2*g4^12) + (g4^5*t^8.892*y)/g2^5 + (g4^5*t^8.892*y)/g3^5 + (g2^2*g3^2*g4^2*t^8.943*y)/g1^2 + (g2*g3*g4*t^8.972*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55691 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{3}^{2}$ + ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$ | 0.8404 | 1.0122 | 0.8302 | [M:[0.828], q:[0.7423, 0.7423, 0.7423], qb:[0.586, 0.586, 0.5394], phi:[0.5154]] | t^2.484 + t^3.093 + 2*t^3.376 + 3*t^3.845 + 6*t^3.985 + 3*t^4.454 + t^4.783 + 2*t^4.923 + t^4.968 + 3*t^5.062 + t^5.577 - 8*t^6. - t^4.546/y - t^4.546*y | detail |