Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55691 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ | 0.8404 | 1.0122 | 0.8302 | [X:[], M:[0.828], q:[0.7423, 0.7423, 0.7423], qb:[0.586, 0.586, 0.5394], phi:[0.5154]] | [X:[], M:[[0, -5, -5, 0]], q:[[-1, 2, 2, 2], [1, 0, 0, 0], [0, 1, 1, 1]], qb:[[0, 5, 0, 0], [0, 0, 5, 0], [0, 0, 0, 5]], phi:[[0, -2, -2, -2]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_3$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ q_2q_3$, $ q_1q_2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ M_1^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1\phi_1^2$ | . | -8 | t^2.48 + t^3.09 + 2*t^3.38 + 3*t^3.85 + 6*t^3.98 + 3*t^4.45 + t^4.78 + 2*t^4.92 + t^4.97 + 3*t^5.06 + t^5.58 - 8*t^6. - 2*t^6.14 + t^6.19 + 3*t^6.33 + 2*t^6.47 - 3*t^6.61 + 3*t^6.75 + 3*t^6.94 + 6*t^7.22 + t^7.27 + 9*t^7.36 + t^7.45 - t^7.55 + 3*t^7.69 + 16*t^7.83 + t^7.88 + 15*t^7.97 + 2*t^8.02 + t^8.06 + 3*t^8.15 + 2*t^8.16 + 8*t^8.3 + 14*t^8.44 - 5*t^8.48 + 3*t^8.63 + t^8.67 + t^8.76 + 6*t^8.77 + 3*t^8.81 + 9*t^8.91 - t^4.55/y - t^7.03/y + t^7.45/y - t^7.64/y + t^8.06/y + t^8.58/y + (2*t^8.86)/y - t^4.55*y - t^7.03*y + t^7.45*y - t^7.64*y + t^8.06*y + t^8.58*y + 2*t^8.86*y | t^2.48/(g2^5*g3^5) + t^3.09/(g2^4*g3^4*g4^4) + g2^5*g4^5*t^3.38 + g3^5*g4^5*t^3.38 + g1*g4^5*t^3.85 + g2*g3*g4^6*t^3.85 + (g2^2*g3^2*g4^7*t^3.85)/g1 + g1*g2^5*t^3.98 + g1*g3^5*t^3.98 + g2^6*g3*g4*t^3.98 + g2*g3^6*g4*t^3.98 + (g2^7*g3^2*g4^2*t^3.98)/g1 + (g2^2*g3^7*g4^2*t^3.98)/g1 + g1*g2*g3*g4*t^4.45 + g2^2*g3^2*g4^2*t^4.45 + (g2^3*g3^3*g4^3*t^4.45)/g1 + (g4^8*t^4.78)/(g2^2*g3^2) + (g2^3*g4^3*t^4.92)/g3^2 + (g3^3*g4^3*t^4.92)/g2^2 + t^4.97/(g2^10*g3^10) + (g2^8*t^5.06)/(g3^2*g4^2) + (g2^3*g3^3*t^5.06)/g4^2 + (g3^8*t^5.06)/(g2^2*g4^2) + t^5.58/(g2^9*g3^9*g4^4) - 4*t^6. - (g2^5*t^6.)/g3^5 - (g3^5*t^6.)/g2^5 - (g1*t^6.)/(g2*g3*g4) - (g2*g3*g4*t^6.)/g1 - (g2^5*t^6.14)/g4^5 - (g3^5*t^6.14)/g4^5 + t^6.19/(g2^8*g3^8*g4^8) + (g1*g4^5*t^6.33)/(g2^5*g3^5) + (g4^6*t^6.33)/(g2^4*g3^4) + (g4^7*t^6.33)/(g1*g2^3*g3^3) + (g2*g4*t^6.47)/g3^4 + (g3*g4*t^6.47)/g2^4 - (g1*t^6.61)/g4^5 - (g2*g3*t^6.61)/g4^4 - (g2^2*g3^2*t^6.61)/(g1*g4^3) + g2^10*g4^10*t^6.75 + g2^5*g3^5*g4^10*t^6.75 + g3^10*g4^10*t^6.75 + (g1*g4*t^6.94)/(g2^4*g3^4) + (g4^2*t^6.94)/(g2^3*g3^3) + (g4^3*t^6.94)/(g1*g2^2*g3^2) + g1*g2^5*g4^10*t^7.22 + g1*g3^5*g4^10*t^7.22 + g2^6*g3*g4^11*t^7.22 + g2*g3^6*g4^11*t^7.22 + (g2^7*g3^2*g4^12*t^7.22)/g1 + (g2^2*g3^7*g4^12*t^7.22)/g1 + (g4^8*t^7.27)/(g2^7*g3^7) + g1*g2^10*g4^5*t^7.36 + g1*g2^5*g3^5*g4^5*t^7.36 + g1*g3^10*g4^5*t^7.36 + g2^11*g3*g4^6*t^7.36 + g2^6*g3^6*g4^6*t^7.36 + g2*g3^11*g4^6*t^7.36 + (g2^12*g3^2*g4^7*t^7.36)/g1 + (g2^7*g3^7*g4^7*t^7.36)/g1 + (g2^2*g3^12*g4^7*t^7.36)/g1 + t^7.45/(g2^15*g3^15) - t^7.55/(g2^2*g3^2*g4^2) - (g2^3*t^7.69)/(g3^2*g4^7) - (g3^3*t^7.69)/(g2^2*g4^7) + g1^2*g4^10*t^7.69 + g1*g2*g3*g4^11*t^7.69 + g2^2*g3^2*g4^12*t^7.69 + (g2^3*g3^3*g4^13*t^7.69)/g1 + (g2^4*g3^4*g4^14*t^7.69)/g1^2 + g1^2*g2^5*g4^5*t^7.83 + g1^2*g3^5*g4^5*t^7.83 + 2*g1*g2^6*g3*g4^6*t^7.83 + 2*g1*g2*g3^6*g4^6*t^7.83 + 2*g2^7*g3^2*g4^7*t^7.83 + 2*g2^2*g3^7*g4^7*t^7.83 + (2*g2^8*g3^3*g4^8*t^7.83)/g1 + (2*g2^3*g3^8*g4^8*t^7.83)/g1 + (g2^9*g3^4*g4^9*t^7.83)/g1^2 + (g2^4*g3^9*g4^9*t^7.83)/g1^2 + (g4^4*t^7.88)/(g2^6*g3^6) + g1^2*g2^10*t^7.97 + g1^2*g2^5*g3^5*t^7.97 + g1^2*g3^10*t^7.97 + g1*g2^11*g3*g4*t^7.97 + g1*g2^6*g3^6*g4*t^7.97 + g1*g2*g3^11*g4*t^7.97 + g2^12*g3^2*g4^2*t^7.97 + g2^7*g3^7*g4^2*t^7.97 + g2^2*g3^12*g4^2*t^7.97 + (g2^13*g3^3*g4^3*t^7.97)/g1 + (g2^8*g3^8*g4^3*t^7.97)/g1 + (g2^3*g3^13*g4^3*t^7.97)/g1 + (g2^14*g3^4*g4^4*t^7.97)/g1^2 + (g2^9*g3^9*g4^4*t^7.97)/g1^2 + (g2^4*g3^14*g4^4*t^7.97)/g1^2 + t^8.02/(g2*g3^6*g4) + t^8.02/(g2^6*g3*g4) + t^8.06/(g2^14*g3^14*g4^4) + (g2^4*t^8.15)/(g3^6*g4^6) + t^8.15/(g2*g3*g4^6) + (g3^4*t^8.15)/(g2^6*g4^6) + (g2^3*g4^13*t^8.16)/g3^2 + (g3^3*g4^13*t^8.16)/g2^2 + g1^2*g2*g3*g4^6*t^8.3 + g1*g2^2*g3^2*g4^7*t^8.3 + (g2^8*g4^8*t^8.3)/g3^2 + 2*g2^3*g3^3*g4^8*t^8.3 + (g3^8*g4^8*t^8.3)/g2^2 + (g2^4*g3^4*g4^9*t^8.3)/g1 + (g2^5*g3^5*g4^10*t^8.3)/g1^2 + g1^2*g2^6*g3*g4*t^8.44 + g1^2*g2*g3^6*g4*t^8.44 + g1*g2^7*g3^2*g4^2*t^8.44 + g1*g2^2*g3^7*g4^2*t^8.44 + (g2^13*g4^3*t^8.44)/g3^2 + 2*g2^8*g3^3*g4^3*t^8.44 + 2*g2^3*g3^8*g4^3*t^8.44 + (g3^13*g4^3*t^8.44)/g2^2 + (g2^9*g3^4*g4^4*t^8.44)/g1 + (g2^4*g3^9*g4^4*t^8.44)/g1 + (g2^10*g3^5*g4^5*t^8.44)/g1^2 + (g2^5*g3^10*g4^5*t^8.44)/g1^2 - (3*t^8.48)/(g2^5*g3^5) - (g1*t^8.48)/(g2^6*g3^6*g4) - (g4*t^8.48)/(g1*g2^4*g3^4) + (g1*g4^13*t^8.63)/(g2^2*g3^2) + (g4^14*t^8.63)/(g2*g3) + (g4^15*t^8.63)/g1 + t^8.67/(g2^13*g3^13*g4^8) + t^8.76/g4^10 + (g1*g2^3*g4^8*t^8.77)/g3^2 + (g1*g3^3*g4^8*t^8.77)/g2^2 + (g2^4*g4^9*t^8.77)/g3 + (g3^4*g4^9*t^8.77)/g2 + (g2^5*g4^10*t^8.77)/g1 + (g3^5*g4^10*t^8.77)/g1 + (g1*g4^5*t^8.81)/(g2^10*g3^10) + (g4^6*t^8.81)/(g2^9*g3^9) + (g4^7*t^8.81)/(g1*g2^8*g3^8) + (g1*g2^8*g4^3*t^8.91)/g3^2 + g1*g2^3*g3^3*g4^3*t^8.91 + (g1*g3^8*g4^3*t^8.91)/g2^2 + (g2^9*g4^4*t^8.91)/g3 + g2^4*g3^4*g4^4*t^8.91 + (g3^9*g4^4*t^8.91)/g2 + (g2^10*g4^5*t^8.91)/g1 + (g2^5*g3^5*g4^5*t^8.91)/g1 + (g3^10*g4^5*t^8.91)/g1 - t^4.55/(g2^2*g3^2*g4^2*y) - t^7.03/(g2^7*g3^7*g4^2*y) + (g2^2*g3^2*g4^2*t^7.45)/y - t^7.64/(g2^6*g3^6*g4^6*y) + (g2^3*g3^3*t^8.06)/(g4^2*y) + t^8.58/(g2^9*g3^9*g4^4*y) + (g4^5*t^8.86)/(g2^5*y) + (g4^5*t^8.86)/(g3^5*y) - (t^4.55*y)/(g2^2*g3^2*g4^2) - (t^7.03*y)/(g2^7*g3^7*g4^2) + g2^2*g3^2*g4^2*t^7.45*y - (t^7.64*y)/(g2^6*g3^6*g4^6) + (g2^3*g3^3*t^8.06*y)/g4^2 + (t^8.58*y)/(g2^9*g3^9*g4^4) + (g4^5*t^8.86*y)/g2^5 + (g4^5*t^8.86*y)/g3^5 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55724 | $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ M_2q_2\tilde{q}_3$ | 0.8608 | 1.0504 | 0.8195 | [X:[], M:[0.8291, 0.6971], q:[0.7346, 0.7535, 0.7441], qb:[0.5855, 0.5855, 0.5493], phi:[0.5119]] | t^2.09 + t^2.49 + t^3.07 + 2*t^3.4 + t^3.85 + t^3.88 + 2*t^3.96 + 2*t^3.99 + 2*t^4.02 + t^4.18 + t^4.44 + t^4.46 + t^4.49 + t^4.58 + t^4.83 + 2*t^4.94 + t^4.97 + 3*t^5.05 + t^5.16 + 2*t^5.5 + t^5.56 + t^5.94 - 6*t^6. - t^4.54/y - t^4.54*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55446 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ \phi_1q_3^2$ | 0.8279 | 0.9949 | 0.8321 | [X:[], M:[], q:[0.7328, 0.7328, 0.7328], qb:[0.5547, 0.5547, 0.5547], phi:[0.5344]] | t^3.21 + 3*t^3.33 + 9*t^3.86 + 3*t^4.4 + 6*t^4.93 - 12*t^6. - t^4.6/y - t^4.6*y | detail |