Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55622 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{1}X_{1}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ | 0.7194 | 0.8963 | 0.8026 | [X:[1.3646], M:[0.6354, 0.6884, 1.0265, 0.9735, 0.9735, 0.9084, 0.6762], q:[0.7923, 0.5723], qb:[0.5193, 0.4542], phi:[0.4155]] | [X:[[0, 1]], M:[[0, -1], [16, 1], [8, 1], [-8, -1], [-8, -1], [14, 0], [-16, 0]], q:[[-1, 0], [1, 1]], qb:[[-15, -1], [7, 0]], phi:[[2, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{7}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{5}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{7}$, ${ }X_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{5}M_{7}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{5}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}^{2}$ | ${}$ | -3 | t^2.029 + t^2.065 + t^2.493 + t^2.725 + 2*t^2.92 + t^3.739 + t^4.057 + 2*t^4.094 + t^4.131 + t^4.167 + t^4.326 + t^4.362 + 2*t^4.521 + t^4.558 + t^4.681 + t^4.754 + t^4.79 + 2*t^4.949 + 3*t^4.986 + t^5.218 + 2*t^5.413 + t^5.45 + t^5.645 + t^5.768 + 2*t^5.841 - 3*t^6. + t^6.086 + 2*t^6.122 + t^6.159 + t^6.196 + t^6.232 + 2*t^6.391 + t^6.464 + 2*t^6.55 + 2*t^6.587 + t^6.623 + 2*t^6.66 + t^6.709 + t^6.746 + t^6.782 + 2*t^6.819 + t^6.855 + t^6.856 + 2*t^6.977 + 4*t^7.014 + 3*t^7.051 + 2*t^7.087 + t^7.173 + t^7.246 + 3*t^7.283 + 2*t^7.442 + 4*t^7.479 + t^7.515 + 2*t^7.711 + t^7.796 + t^7.869 + 4*t^7.906 + t^7.943 - 4*t^8.029 - 3*t^8.065 + t^8.114 + t^8.138 + 2*t^8.151 + t^8.175 + t^8.188 + t^8.224 + t^8.261 + 2*t^8.334 + t^8.371 + t^8.419 + t^8.42 + t^8.457 - 3*t^8.493 + t^8.529 + t^8.566 + 2*t^8.578 + 2*t^8.615 + t^8.652 + t^8.688 + t^8.689 + t^8.724 - 2*t^8.725 + t^8.738 + 2*t^8.761 + 2*t^8.774 + 2*t^8.811 + t^8.847 + 4*t^8.884 - 6*t^8.92 + t^8.921 - t^4.246/y - t^6.275/y - t^6.312/y - t^6.739/y - t^6.971/y + t^7.094/y - t^7.167/y + t^7.326/y + (2*t^7.521)/y + t^7.558/y + (2*t^7.754)/y + t^7.79/y + (2*t^7.949)/y + (2*t^7.986)/y + t^8.181/y + (2*t^8.218)/y - t^8.303/y - t^8.34/y - t^8.377/y + (2*t^8.413)/y + (2*t^8.645)/y + t^8.841/y - t^4.246*y - t^6.275*y - t^6.312*y - t^6.739*y - t^6.971*y + t^7.094*y - t^7.167*y + t^7.326*y + 2*t^7.521*y + t^7.558*y + 2*t^7.754*y + t^7.79*y + 2*t^7.949*y + 2*t^7.986*y + t^8.181*y + 2*t^8.218*y - t^8.303*y - t^8.34*y - t^8.377*y + 2*t^8.413*y + 2*t^8.645*y + t^8.841*y | t^2.029/g1^16 + g1^16*g2*t^2.065 + g1^4*t^2.493 + g1^14*t^2.725 + (2*t^2.92)/(g1^8*g2) + g1^6*t^3.739 + t^4.057/g1^32 + 2*g2*t^4.094 + g1^32*g2^2*t^4.131 + t^4.167/(g1^6*g2) + g1^10*g2*t^4.326 + t^4.362/(g1^28*g2^2) + (2*t^4.521)/g1^12 + g1^20*g2*t^4.558 + g1^4*g2^2*t^4.681 + t^4.754/g1^2 + g1^30*g2*t^4.79 + (2*t^4.949)/(g1^24*g2) + 3*g1^8*t^4.986 + g1^18*t^5.218 + (2*t^5.413)/(g1^4*g2) + g1^28*t^5.45 + (g1^6*t^5.645)/g2 + t^5.768/g1^10 + (2*t^5.841)/(g1^16*g2^2) - 3*t^6. + t^6.086/g1^48 + (2*g2*t^6.122)/g1^16 + g1^16*g2^2*t^6.159 + g1^48*g2^3*t^6.196 + g1^10*t^6.232 + t^6.391/(g1^44*g2^2) + g1^26*g2^2*t^6.391 + g1^20*t^6.464 + (2*t^6.55)/g1^28 + 2*g1^4*g2*t^6.587 + g1^36*g2^2*t^6.623 + (2*t^6.66)/(g1^2*g2) + (g2^2*t^6.709)/g1^12 + g1^20*g2^3*t^6.746 + t^6.782/g1^18 + 2*g1^14*g2*t^6.819 + t^6.855/(g1^24*g2^2) + g1^46*g2^2*t^6.856 + (2*t^6.977)/(g1^40*g2) + (4*t^7.014)/g1^8 + 3*g1^24*g2*t^7.051 + (2*t^7.087)/(g1^14*g2^2) + g1^8*g2^2*t^7.173 + g1^2*t^7.246 + (2*t^7.283)/(g1^36*g2^3) + g1^34*g2*t^7.283 + (2*t^7.442)/(g1^20*g2) + 4*g1^12*t^7.479 + g1^44*g2*t^7.515 + 2*g1^22*t^7.711 + t^7.796/g1^26 + t^7.869/(g1^32*g2^2) + (4*t^7.906)/g2 + g1^32*t^7.943 - (4*t^8.029)/g1^16 - 3*g1^16*g2*t^8.065 + t^8.114/g1^64 + (g1^10*t^8.138)/g2 + (2*g2*t^8.151)/g1^32 + g1^42*t^8.175 + g2^2*t^8.188 + g1^32*g2^3*t^8.224 + g1^64*g2^4*t^8.261 + (2*t^8.334)/(g1^12*g2^2) + (g1^20*t^8.371)/g2 + t^8.419/(g1^60*g2^2) + g1^10*g2^2*t^8.42 + g1^42*g2^3*t^8.457 - 3*g1^4*t^8.493 + t^8.529/(g1^34*g2^3) + t^8.566/(g1^2*g2^2) + (2*t^8.578)/g1^44 + (2*g2*t^8.615)/g1^12 + g1^20*g2^2*t^8.652 + t^8.688/(g1^18*g2) + g1^52*g2^3*t^8.689 + t^8.724/(g1^56*g2^4) - 2*g1^14*t^8.725 + (g2^2*t^8.738)/g1^28 + (2*t^8.761)/(g1^24*g2^3) + 2*g1^4*g2^3*t^8.774 + t^8.811/g1^34 + g1^36*g2^4*t^8.811 + (g2*t^8.847)/g1^2 + (2*t^8.884)/(g1^40*g2^2) + 2*g1^30*g2^2*t^8.884 - (6*t^8.92)/(g1^8*g2) + g1^62*g2^3*t^8.921 - (g1^2*t^4.246)/y - t^6.275/(g1^14*y) - (g1^18*g2*t^6.312)/y - (g1^6*t^6.739)/y - (g1^16*t^6.971)/y + (g2*t^7.094)/y - t^7.167/(g1^6*g2*y) + (g1^10*g2*t^7.326)/y + (2*t^7.521)/(g1^12*y) + (g1^20*g2*t^7.558)/y + (2*t^7.754)/(g1^2*y) + (g1^30*g2*t^7.79)/y + (2*t^7.949)/(g1^24*g2*y) + (2*g1^8*t^7.986)/y + t^8.181/(g1^14*g2*y) + (2*g1^18*t^8.218)/y - t^8.303/(g1^30*y) - (g1^2*g2*t^8.34)/y - (g1^34*g2^2*t^8.377)/y + (2*t^8.413)/(g1^4*g2*y) + (2*g1^6*t^8.645)/(g2*y) + t^8.841/(g1^16*g2^2*y) - g1^2*t^4.246*y - (t^6.275*y)/g1^14 - g1^18*g2*t^6.312*y - g1^6*t^6.739*y - g1^16*t^6.971*y + g2*t^7.094*y - (t^7.167*y)/(g1^6*g2) + g1^10*g2*t^7.326*y + (2*t^7.521*y)/g1^12 + g1^20*g2*t^7.558*y + (2*t^7.754*y)/g1^2 + g1^30*g2*t^7.79*y + (2*t^7.949*y)/(g1^24*g2) + 2*g1^8*t^7.986*y + (t^8.181*y)/(g1^14*g2) + 2*g1^18*t^8.218*y - (t^8.303*y)/g1^30 - g1^2*g2*t^8.34*y - g1^34*g2^2*t^8.377*y + (2*t^8.413*y)/(g1^4*g2) + (2*g1^6*t^8.645*y)/g2 + (t^8.841*y)/(g1^16*g2^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47154 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{1}X_{1}$ | 0.6986 | 0.8555 | 0.8166 | [X:[1.3672], M:[0.6328, 0.6867, 1.0269, 0.9731, 0.9731, 0.9045], q:[0.7925, 0.5747], qb:[0.5208, 0.4523], phi:[0.4149]] | t^2.06 + t^2.49 + t^2.714 + 2*t^2.919 + t^3.734 + t^3.958 + t^4.102 + t^4.12 + t^4.164 + t^4.326 + t^4.37 + t^4.531 + t^4.55 + t^4.693 + t^4.774 + 3*t^4.979 + t^5.203 + 2*t^5.409 + t^5.427 + t^5.633 + 2*t^5.838 - 3*t^6. - t^4.245/y - t^4.245*y | detail |