Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3384 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}X_{1}$ + ${ }M_{7}\phi_{1}q_{1}^{2}$ | 0.7194 | 0.8963 | 0.8026 | [X:[1.3646], M:[0.9735, 0.6884, 1.0265, 0.6354, 0.9735, 0.9084, 0.6762], q:[0.4542, 0.5723], qb:[0.5193, 0.7923], phi:[0.4155]] | [X:[[0, 1]], M:[[8, -1], [-16, 1], [-8, 1], [0, -1], [8, -1], [-14, 0], [16, 0]], q:[[-7, 0], [-1, 1]], qb:[[15, -1], [1, 0]], phi:[[-2, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{7}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{6}$, ${ }M_{1}$, ${ }M_{5}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{7}$, ${ }X_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{2}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{5}M_{7}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{5}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}^{2}$ | ${}$ | -3 | t^2.029 + t^2.065 + t^2.493 + t^2.725 + 2*t^2.92 + t^3.739 + t^4.057 + 2*t^4.094 + t^4.131 + t^4.167 + t^4.326 + t^4.362 + 2*t^4.521 + t^4.558 + t^4.681 + t^4.754 + t^4.79 + 2*t^4.949 + 3*t^4.986 + t^5.218 + 2*t^5.413 + t^5.45 + t^5.645 + t^5.768 + 2*t^5.841 - 3*t^6. + t^6.086 + 2*t^6.122 + t^6.159 + t^6.196 + t^6.232 + 2*t^6.391 + t^6.464 + 2*t^6.55 + 2*t^6.587 + t^6.623 + 2*t^6.66 + t^6.709 + t^6.746 + t^6.782 + 2*t^6.819 + t^6.855 + t^6.856 + 2*t^6.977 + 4*t^7.014 + 3*t^7.051 + 2*t^7.087 + t^7.173 + t^7.246 + 3*t^7.283 + 2*t^7.442 + 4*t^7.479 + t^7.515 + 2*t^7.711 + t^7.796 + t^7.869 + 4*t^7.906 + t^7.943 - 4*t^8.029 - 3*t^8.065 + t^8.114 + t^8.138 + 2*t^8.151 + t^8.175 + t^8.188 + t^8.224 + t^8.261 + 2*t^8.334 + t^8.371 + t^8.419 + t^8.42 + t^8.457 - 3*t^8.493 + t^8.529 + t^8.566 + 2*t^8.578 + 2*t^8.615 + t^8.652 + t^8.688 + t^8.689 + t^8.724 - 2*t^8.725 + t^8.738 + 2*t^8.761 + 2*t^8.774 + 2*t^8.811 + t^8.847 + 4*t^8.884 - 6*t^8.92 + t^8.921 - t^4.246/y - t^6.275/y - t^6.312/y - t^6.739/y - t^6.971/y + t^7.094/y - t^7.167/y + t^7.326/y + (2*t^7.521)/y + t^7.558/y + (2*t^7.754)/y + t^7.79/y + (2*t^7.949)/y + (2*t^7.986)/y + t^8.181/y + (2*t^8.218)/y - t^8.303/y - t^8.34/y - t^8.377/y + (2*t^8.413)/y + (2*t^8.645)/y + t^8.841/y - t^4.246*y - t^6.275*y - t^6.312*y - t^6.739*y - t^6.971*y + t^7.094*y - t^7.167*y + t^7.326*y + 2*t^7.521*y + t^7.558*y + 2*t^7.754*y + t^7.79*y + 2*t^7.949*y + 2*t^7.986*y + t^8.181*y + 2*t^8.218*y - t^8.303*y - t^8.34*y - t^8.377*y + 2*t^8.413*y + 2*t^8.645*y + t^8.841*y | g1^16*t^2.029 + (g2*t^2.065)/g1^16 + t^2.493/g1^4 + t^2.725/g1^14 + (2*g1^8*t^2.92)/g2 + t^3.739/g1^6 + g1^32*t^4.057 + 2*g2*t^4.094 + (g2^2*t^4.131)/g1^32 + (g1^6*t^4.167)/g2 + (g2*t^4.326)/g1^10 + (g1^28*t^4.362)/g2^2 + 2*g1^12*t^4.521 + (g2*t^4.558)/g1^20 + (g2^2*t^4.681)/g1^4 + g1^2*t^4.754 + (g2*t^4.79)/g1^30 + (2*g1^24*t^4.949)/g2 + (3*t^4.986)/g1^8 + t^5.218/g1^18 + (2*g1^4*t^5.413)/g2 + t^5.45/g1^28 + t^5.645/(g1^6*g2) + g1^10*t^5.768 + (2*g1^16*t^5.841)/g2^2 - 3*t^6. + g1^48*t^6.086 + 2*g1^16*g2*t^6.122 + (g2^2*t^6.159)/g1^16 + (g2^3*t^6.196)/g1^48 + t^6.232/g1^10 + (g1^44*t^6.391)/g2^2 + (g2^2*t^6.391)/g1^26 + t^6.464/g1^20 + 2*g1^28*t^6.55 + (2*g2*t^6.587)/g1^4 + (g2^2*t^6.623)/g1^36 + (2*g1^2*t^6.66)/g2 + g1^12*g2^2*t^6.709 + (g2^3*t^6.746)/g1^20 + g1^18*t^6.782 + (2*g2*t^6.819)/g1^14 + (g1^24*t^6.855)/g2^2 + (g2^2*t^6.856)/g1^46 + (2*g1^40*t^6.977)/g2 + 4*g1^8*t^7.014 + (3*g2*t^7.051)/g1^24 + (2*g1^14*t^7.087)/g2^2 + (g2^2*t^7.173)/g1^8 + t^7.246/g1^2 + (2*g1^36*t^7.283)/g2^3 + (g2*t^7.283)/g1^34 + (2*g1^20*t^7.442)/g2 + (4*t^7.479)/g1^12 + (g2*t^7.515)/g1^44 + (2*t^7.711)/g1^22 + g1^26*t^7.796 + (g1^32*t^7.869)/g2^2 + (4*t^7.906)/g2 + t^7.943/g1^32 - 4*g1^16*t^8.029 - (3*g2*t^8.065)/g1^16 + g1^64*t^8.114 + t^8.138/(g1^10*g2) + 2*g1^32*g2*t^8.151 + t^8.175/g1^42 + g2^2*t^8.188 + (g2^3*t^8.224)/g1^32 + (g2^4*t^8.261)/g1^64 + (2*g1^12*t^8.334)/g2^2 + t^8.371/(g1^20*g2) + (g1^60*t^8.419)/g2^2 + (g2^2*t^8.42)/g1^10 + (g2^3*t^8.457)/g1^42 - (3*t^8.493)/g1^4 + (g1^34*t^8.529)/g2^3 + (g1^2*t^8.566)/g2^2 + 2*g1^44*t^8.578 + 2*g1^12*g2*t^8.615 + (g2^2*t^8.652)/g1^20 + (g1^18*t^8.688)/g2 + (g2^3*t^8.689)/g1^52 + (g1^56*t^8.724)/g2^4 - (2*t^8.725)/g1^14 + g1^28*g2^2*t^8.738 + (2*g1^24*t^8.761)/g2^3 + (2*g2^3*t^8.774)/g1^4 + g1^34*t^8.811 + (g2^4*t^8.811)/g1^36 + g1^2*g2*t^8.847 + (2*g1^40*t^8.884)/g2^2 + (2*g2^2*t^8.884)/g1^30 - (6*g1^8*t^8.92)/g2 + (g2^3*t^8.921)/g1^62 - t^4.246/(g1^2*y) - (g1^14*t^6.275)/y - (g2*t^6.312)/(g1^18*y) - t^6.739/(g1^6*y) - t^6.971/(g1^16*y) + (g2*t^7.094)/y - (g1^6*t^7.167)/(g2*y) + (g2*t^7.326)/(g1^10*y) + (2*g1^12*t^7.521)/y + (g2*t^7.558)/(g1^20*y) + (2*g1^2*t^7.754)/y + (g2*t^7.79)/(g1^30*y) + (2*g1^24*t^7.949)/(g2*y) + (2*t^7.986)/(g1^8*y) + (g1^14*t^8.181)/(g2*y) + (2*t^8.218)/(g1^18*y) - (g1^30*t^8.303)/y - (g2*t^8.34)/(g1^2*y) - (g2^2*t^8.377)/(g1^34*y) + (2*g1^4*t^8.413)/(g2*y) + (2*t^8.645)/(g1^6*g2*y) + (g1^16*t^8.841)/(g2^2*y) - (t^4.246*y)/g1^2 - g1^14*t^6.275*y - (g2*t^6.312*y)/g1^18 - (t^6.739*y)/g1^6 - (t^6.971*y)/g1^16 + g2*t^7.094*y - (g1^6*t^7.167*y)/g2 + (g2*t^7.326*y)/g1^10 + 2*g1^12*t^7.521*y + (g2*t^7.558*y)/g1^20 + 2*g1^2*t^7.754*y + (g2*t^7.79*y)/g1^30 + (2*g1^24*t^7.949*y)/g2 + (2*t^7.986*y)/g1^8 + (g1^14*t^8.181*y)/g2 + (2*t^8.218*y)/g1^18 - g1^30*t^8.303*y - (g2*t^8.34*y)/g1^2 - (g2^2*t^8.377*y)/g1^34 + (2*g1^4*t^8.413*y)/g2 + (2*t^8.645*y)/(g1^6*g2) + (g1^16*t^8.841*y)/g2^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2833 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}X_{1}$ | 0.6986 | 0.8555 | 0.8166 | [X:[1.3672], M:[0.9731, 0.6867, 1.0269, 0.6328, 0.9731, 0.9045], q:[0.4523, 0.5747], qb:[0.5208, 0.7925], phi:[0.4149]] | t^2.06 + t^2.49 + t^2.714 + 2*t^2.919 + t^3.734 + t^3.958 + t^4.102 + t^4.12 + t^4.164 + t^4.326 + t^4.37 + t^4.531 + t^4.55 + t^4.693 + t^4.774 + 3*t^4.979 + t^5.203 + 2*t^5.409 + t^5.427 + t^5.633 + 2*t^5.838 - 3*t^6. - t^4.245/y - t^4.245*y | detail |