Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5558 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ + ${ }M_{6}q_{1}q_{2}$ + ${ }M_{1}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{8}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{9}$ 0.6822 0.8713 0.783 [M:[1.1854, 1.2098, 0.7658, 0.8146, 0.8146, 0.7658, 0.839, 0.7414, 0.8146], q:[0.8024, 0.4317], qb:[0.3829, 0.8024], phi:[0.3951]] [M:[[-6], [4], [-14], [6], [6], [-14], [16], [-24], [6]], q:[[1], [13]], qb:[[-7], [1]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{8}$, ${ }M_{3}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{5}$, ${ }M_{9}$, ${ }M_{7}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{8}^{2}$, ${ }M_{3}M_{8}$, ${ }M_{6}M_{8}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{5}M_{8}$, ${ }M_{8}M_{9}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{5}$, ${ }M_{4}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{7}M_{8}$, ${ }M_{3}M_{9}$, ${ }M_{6}M_{9}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{7}$, ${ }M_{6}M_{7}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{9}$, ${ }M_{5}M_{9}$, ${ }M_{9}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{7}$, ${ }M_{5}M_{7}$, ${ }M_{7}M_{9}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{8}$, ${ }M_{8}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{6}$, ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ ${}\phi_{1}\tilde{q}_{2}^{2}$ -3 t^2.224 + 2*t^2.298 + 3*t^2.444 + t^2.517 + 2*t^3.629 + t^4.449 + 2*t^4.522 + 3*t^4.595 + 3*t^4.668 + 7*t^4.741 + 3*t^4.815 + 6*t^4.888 + 3*t^4.961 + t^5.034 + t^5.854 + 2*t^5.927 - 3*t^6. + 4*t^6.073 + t^6.146 + t^6.673 + 2*t^6.746 + 3*t^6.819 + 7*t^6.893 + 7*t^6.966 + 11*t^7.039 + 8*t^7.112 + 11*t^7.185 + 8*t^7.259 + 10*t^7.332 + 5*t^7.405 + 3*t^7.478 + t^7.551 + t^8.078 - t^8.224 - 6*t^8.298 + t^8.371 - 9*t^8.444 + t^8.517 + t^8.664 + t^8.897 + 2*t^8.97 - t^4.185/y - t^6.41/y - (2*t^6.483)/y - (2*t^6.629)/y - t^6.702/y + (2*t^7.522)/y + t^7.595/y + (4*t^7.668)/y + (9*t^7.741)/y + (2*t^7.815)/y + (5*t^7.888)/y + (4*t^7.961)/y - t^8.634/y - (2*t^8.707)/y - (3*t^8.78)/y - t^8.927/y - t^4.185*y - t^6.41*y - 2*t^6.483*y - 2*t^6.629*y - t^6.702*y + 2*t^7.522*y + t^7.595*y + 4*t^7.668*y + 9*t^7.741*y + 2*t^7.815*y + 5*t^7.888*y + 4*t^7.961*y - t^8.634*y - 2*t^8.707*y - 3*t^8.78*y - t^8.927*y t^2.224/g1^24 + (2*t^2.298)/g1^14 + 3*g1^6*t^2.444 + g1^16*t^2.517 + 2*g1^4*t^3.629 + t^4.449/g1^48 + (2*t^4.522)/g1^38 + (3*t^4.595)/g1^28 + (3*t^4.668)/g1^18 + (7*t^4.741)/g1^8 + 3*g1^2*t^4.815 + 6*g1^12*t^4.888 + 3*g1^22*t^4.961 + g1^32*t^5.034 + t^5.854/g1^20 + (2*t^5.927)/g1^10 - 3*t^6. + 4*g1^10*t^6.073 + g1^20*t^6.146 + t^6.673/g1^72 + (2*t^6.746)/g1^62 + (3*t^6.819)/g1^52 + (7*t^6.893)/g1^42 + (7*t^6.966)/g1^32 + (11*t^7.039)/g1^22 + (8*t^7.112)/g1^12 + (11*t^7.185)/g1^2 + 8*g1^8*t^7.259 + 10*g1^18*t^7.332 + 5*g1^28*t^7.405 + 3*g1^38*t^7.478 + g1^48*t^7.551 + t^8.078/g1^44 - t^8.224/g1^24 - (6*t^8.298)/g1^14 + t^8.371/g1^4 - 9*g1^6*t^8.444 + g1^16*t^8.517 + g1^36*t^8.664 + t^8.897/g1^96 + (2*t^8.97)/g1^86 - t^4.185/(g1^2*y) - t^6.41/(g1^26*y) - (2*t^6.483)/(g1^16*y) - (2*g1^4*t^6.629)/y - (g1^14*t^6.702)/y + (2*t^7.522)/(g1^38*y) + t^7.595/(g1^28*y) + (4*t^7.668)/(g1^18*y) + (9*t^7.741)/(g1^8*y) + (2*g1^2*t^7.815)/y + (5*g1^12*t^7.888)/y + (4*g1^22*t^7.961)/y - t^8.634/(g1^50*y) - (2*t^8.707)/(g1^40*y) - (3*t^8.78)/(g1^30*y) - t^8.927/(g1^10*y) - (t^4.185*y)/g1^2 - (t^6.41*y)/g1^26 - (2*t^6.483*y)/g1^16 - 2*g1^4*t^6.629*y - g1^14*t^6.702*y + (2*t^7.522*y)/g1^38 + (t^7.595*y)/g1^28 + (4*t^7.668*y)/g1^18 + (9*t^7.741*y)/g1^8 + 2*g1^2*t^7.815*y + 5*g1^12*t^7.888*y + 4*g1^22*t^7.961*y - (t^8.634*y)/g1^50 - (2*t^8.707*y)/g1^40 - (3*t^8.78*y)/g1^30 - (t^8.927*y)/g1^10


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3991 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ + ${ }M_{6}q_{1}q_{2}$ + ${ }M_{1}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{8}\phi_{1}q_{2}^{2}$ 0.6667 0.8446 0.7894 [M:[1.1828, 1.2114, 0.76, 0.8172, 0.8172, 0.76, 0.8458, 0.7313], q:[0.8029, 0.4372], qb:[0.38, 0.8029], phi:[0.3943]] t^2.194 + 2*t^2.28 + 2*t^2.451 + t^2.537 + t^3.549 + 2*t^3.634 + t^4.388 + 2*t^4.474 + 3*t^4.56 + 2*t^4.646 + 5*t^4.731 + 3*t^4.817 + 3*t^4.903 + 2*t^4.989 + t^5.075 + t^5.743 + 3*t^5.828 + 2*t^5.914 - t^6. - t^4.183/y - t^4.183*y detail