Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3991 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2\phi_1^2$ + $ M_3q_2\tilde{q}_2$ + $ M_4\tilde{q}_1\tilde{q}_2$ + $ M_1M_4$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1q_2$ + $ M_1M_5$ + $ M_7\phi_1\tilde{q}_1^2$ + $ M_8\phi_1q_2^2$ 0.6667 0.8446 0.7894 [X:[], M:[1.1828, 1.2114, 0.76, 0.8172, 0.8172, 0.76, 0.8458, 0.7313], q:[0.8029, 0.4372], qb:[0.38, 0.8029], phi:[0.3943]] [X:[], M:[[-6], [4], [-14], [6], [6], [-14], [16], [-24]], q:[[1], [13]], qb:[[-7], [1]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_8$, $ M_3$, $ M_6$, $ M_4$, $ M_5$, $ M_7$, $ M_1$, $ M_2$, $ \phi_1q_2\tilde{q}_1$, $ M_8^2$, $ M_3M_8$, $ M_6M_8$, $ M_3^2$, $ M_3M_6$, $ M_6^2$, $ M_4M_8$, $ M_5M_8$, $ M_3M_4$, $ M_3M_5$, $ M_4M_6$, $ M_5M_6$, $ M_7M_8$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3M_7$, $ M_6M_7$, $ q_1\tilde{q}_2$, $ M_4^2$, $ M_4M_5$, $ M_5^2$, $ \phi_1q_2\tilde{q}_2$, $ M_4M_7$, $ M_5M_7$, $ M_7^2$, $ M_1M_8$, $ M_1M_3$, $ M_1M_6$, $ M_2M_8$, $ M_8\phi_1q_2\tilde{q}_1$, $ M_2M_3$, $ M_2M_6$, $ M_6\phi_1q_2\tilde{q}_1$ $\phi_1\tilde{q}_2^2$ -1 t^2.19 + 2*t^2.28 + 2*t^2.45 + t^2.54 + t^3.55 + 2*t^3.63 + t^4.39 + 2*t^4.47 + 3*t^4.56 + 2*t^4.65 + 5*t^4.73 + 3*t^4.82 + 3*t^4.9 + 2*t^4.99 + t^5.07 + t^5.74 + 3*t^5.83 + 2*t^5.91 - t^6. + 3*t^6.09 + t^6.17 + t^6.58 + 2*t^6.67 + 3*t^6.75 + 6*t^6.84 + 5*t^6.93 + 8*t^7.01 + 6*t^7.1 + 6*t^7.18 + 5*t^7.27 + 4*t^7.35 + 2*t^7.44 + 2*t^7.53 + t^7.61 + t^7.94 + 3*t^8.02 + 3*t^8.11 + t^8.19 - 2*t^8.28 + 2*t^8.37 - 3*t^8.45 - t^8.54 + t^8.71 + t^8.78 + 2*t^8.86 + 3*t^8.95 - t^4.18/y - t^6.38/y - (2*t^6.46)/y - t^6.63/y - t^6.72/y + (2*t^7.47)/y + t^7.56/y + (3*t^7.65)/y + (6*t^7.73)/y + (2*t^7.82)/y + (3*t^7.9)/y + (3*t^7.99)/y - t^8.57/y - (2*t^8.66)/y - (2*t^8.74)/y + (3*t^8.83)/y + t^8.91/y - t^4.18*y - t^6.38*y - 2*t^6.46*y - t^6.63*y - t^6.72*y + 2*t^7.47*y + t^7.56*y + 3*t^7.65*y + 6*t^7.73*y + 2*t^7.82*y + 3*t^7.9*y + 3*t^7.99*y - t^8.57*y - 2*t^8.66*y - 2*t^8.74*y + 3*t^8.83*y + t^8.91*y t^2.19/g1^24 + (2*t^2.28)/g1^14 + 2*g1^6*t^2.45 + g1^16*t^2.54 + t^3.55/g1^6 + 2*g1^4*t^3.63 + t^4.39/g1^48 + (2*t^4.47)/g1^38 + (3*t^4.56)/g1^28 + (2*t^4.65)/g1^18 + (5*t^4.73)/g1^8 + 3*g1^2*t^4.82 + 3*g1^12*t^4.9 + 2*g1^22*t^4.99 + g1^32*t^5.07 + t^5.74/g1^30 + (3*t^5.83)/g1^20 + (2*t^5.91)/g1^10 - t^6. + 3*g1^10*t^6.09 + g1^20*t^6.17 + t^6.58/g1^72 + (2*t^6.67)/g1^62 + (3*t^6.75)/g1^52 + (6*t^6.84)/g1^42 + (5*t^6.93)/g1^32 + (8*t^7.01)/g1^22 + (6*t^7.1)/g1^12 + (6*t^7.18)/g1^2 + 5*g1^8*t^7.27 + 4*g1^18*t^7.35 + 2*g1^28*t^7.44 + 2*g1^38*t^7.53 + g1^48*t^7.61 + t^7.94/g1^54 + (3*t^8.02)/g1^44 + (3*t^8.11)/g1^34 + t^8.19/g1^24 - (2*t^8.28)/g1^14 + (2*t^8.37)/g1^4 - 3*g1^6*t^8.45 - g1^16*t^8.54 + g1^36*t^8.71 + t^8.78/g1^96 + (2*t^8.86)/g1^86 + (3*t^8.95)/g1^76 - t^4.18/(g1^2*y) - t^6.38/(g1^26*y) - (2*t^6.46)/(g1^16*y) - (g1^4*t^6.63)/y - (g1^14*t^6.72)/y + (2*t^7.47)/(g1^38*y) + t^7.56/(g1^28*y) + (3*t^7.65)/(g1^18*y) + (6*t^7.73)/(g1^8*y) + (2*g1^2*t^7.82)/y + (3*g1^12*t^7.9)/y + (3*g1^22*t^7.99)/y - t^8.57/(g1^50*y) - (2*t^8.66)/(g1^40*y) - (2*t^8.74)/(g1^30*y) + (3*t^8.83)/(g1^20*y) + t^8.91/(g1^10*y) - (t^4.18*y)/g1^2 - (t^6.38*y)/g1^26 - (2*t^6.46*y)/g1^16 - g1^4*t^6.63*y - g1^14*t^6.72*y + (2*t^7.47*y)/g1^38 + (t^7.56*y)/g1^28 + (3*t^7.65*y)/g1^18 + (6*t^7.73*y)/g1^8 + 2*g1^2*t^7.82*y + 3*g1^12*t^7.9*y + 3*g1^22*t^7.99*y - (t^8.57*y)/g1^50 - (2*t^8.66*y)/g1^40 - (2*t^8.74*y)/g1^30 + (3*t^8.83*y)/g1^20 + (t^8.91*y)/g1^10


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
5558 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2\phi_1^2$ + $ M_3q_2\tilde{q}_2$ + $ M_4\tilde{q}_1\tilde{q}_2$ + $ M_1M_4$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1q_2$ + $ M_1M_5$ + $ M_7\phi_1\tilde{q}_1^2$ + $ M_8\phi_1q_2^2$ + $ M_1M_9$ 0.6822 0.8713 0.783 [X:[], M:[1.1854, 1.2098, 0.7658, 0.8146, 0.8146, 0.7658, 0.839, 0.7414, 0.8146], q:[0.8024, 0.4317], qb:[0.3829, 0.8024], phi:[0.3951]] t^2.22 + 2*t^2.3 + 3*t^2.44 + t^2.52 + 2*t^3.63 + t^4.45 + 2*t^4.52 + 3*t^4.6 + 3*t^4.67 + 7*t^4.74 + 3*t^4.81 + 6*t^4.89 + 3*t^4.96 + t^5.03 + t^5.85 + 2*t^5.93 - 3*t^6. - t^4.19/y - t^4.19*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1607 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2\phi_1^2$ + $ M_3q_2\tilde{q}_2$ + $ M_4\tilde{q}_1\tilde{q}_2$ + $ M_1M_4$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1q_2$ + $ M_1M_5$ + $ M_7\phi_1\tilde{q}_1^2$ 0.6475 0.8091 0.8002 [X:[], M:[1.1899, 1.2067, 0.7764, 0.8101, 0.8101, 0.7764, 0.827], q:[0.8017, 0.4219], qb:[0.3882, 0.8017], phi:[0.3966]] 2*t^2.33 + 2*t^2.43 + t^2.48 + t^3.57 + 2*t^3.62 + t^3.72 + 3*t^4.66 + 4*t^4.76 + 3*t^4.81 + 3*t^4.86 + 2*t^4.91 + t^4.96 + t^5.9 + 2*t^5.95 - t^6. - t^4.19/y - t^4.19*y detail