Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55536 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}q_{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{1}M_{7}$ 0.6867 0.8631 0.7956 [M:[1.1655, 1.0355, 0.8345, 0.7866, 0.71, 1.0889, 0.8345], q:[0.3933, 0.4412], qb:[0.5712, 0.7722], phi:[0.4555]] [M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [1, -5], [0, 4], [-1, 7]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{7}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }M_{6}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{7}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{7}$, ${ }M_{4}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{7}$ ${}$ -3 t^2.13 + t^2.36 + 2*t^2.503 + t^3.037 + t^3.107 + t^3.267 + t^3.726 + t^4.014 + t^4.03 + 2*t^4.26 + t^4.404 + t^4.49 + 2*t^4.633 + t^4.72 + t^4.794 + 2*t^4.863 + 3*t^5.007 + t^5.167 + t^5.237 + 2*t^5.397 + 2*t^5.54 + t^5.61 + t^5.627 + 2*t^5.77 - 3*t^6. + t^6.074 + t^6.086 + t^6.144 + t^6.16 + t^6.213 + t^6.23 + t^6.304 + t^6.373 + 2*t^6.39 + 2*t^6.517 + 2*t^6.534 - t^6.603 + 2*t^6.62 + 4*t^6.763 + t^6.85 + t^6.907 + t^6.924 - t^6.976 + t^6.993 + t^7.051 + t^7.067 + t^7.079 + t^7.12 + 2*t^7.137 + t^7.154 + t^7.223 + 4*t^7.297 + 2*t^7.367 + t^7.441 + t^7.453 + 3*t^7.51 + 2*t^7.527 + 2*t^7.671 + t^7.74 + t^7.757 + t^7.831 + 2*t^7.9 - t^7.97 + 2*t^7.986 + t^8.027 + 3*t^8.044 + t^8.061 + t^8.113 - 2*t^8.13 + t^8.204 + 3*t^8.274 + t^8.29 + t^8.343 - 4*t^8.36 + t^8.417 + 2*t^8.434 + t^8.446 - 6*t^8.503 + 3*t^8.52 + t^8.573 + 2*t^8.578 + t^8.59 + t^8.647 + 2*t^8.664 + t^8.716 + 2*t^8.75 + 3*t^8.807 + t^8.824 + t^8.877 + 2*t^8.893 - t^8.963 + 2*t^8.98 - t^4.367/y - t^6.497/y - t^6.726/y - t^6.87/y + t^7.26/y - t^7.473/y + t^7.49/y + (2*t^7.633)/y + (3*t^7.863)/y + (2*t^8.007)/y + t^8.167/y + (2*t^8.237)/y + (2*t^8.397)/y + t^8.466/y + (2*t^8.54)/y + (2*t^8.61)/y + (2*t^8.77)/y - t^4.367*y - t^6.497*y - t^6.726*y - t^6.87*y + t^7.26*y - t^7.473*y + t^7.49*y + 2*t^7.633*y + 3*t^7.863*y + 2*t^8.007*y + t^8.167*y + 2*t^8.237*y + 2*t^8.397*y + t^8.466*y + 2*t^8.54*y + 2*t^8.61*y + 2*t^8.77*y (g1*t^2.13)/g2^5 + (g1^2*t^2.36)/g2^16 + (2*g2^7*t^2.503)/g1 + (g2^15*t^3.037)/g1 + (g2^8*t^3.107)/g1^2 + g2^4*t^3.267 + (g1^2*t^3.726)/g2^18 + (g2^28*t^4.014)/g1^4 + g1*g2*t^4.03 + (2*g1^2*t^4.26)/g2^10 + (g2^13*t^4.404)/g1 + (g1^3*t^4.49)/g2^21 + 2*g2^2*t^4.633 + (g1^4*t^4.72)/g2^32 + (g1^2*t^4.794)/g2^2 + (2*g1*t^4.863)/g2^9 + (3*g2^14*t^5.007)/g1^2 + g2^10*t^5.167 + (g2^3*t^5.237)/g1 + (2*g1*t^5.397)/g2 + (2*g2^22*t^5.54)/g1^2 + (g2^15*t^5.61)/g1^3 + (g1^2*t^5.627)/g2^12 + (2*g2^11*t^5.77)/g1 - 3*t^6. + (g2^30*t^6.074)/g1^2 + (g1^4*t^6.086)/g2^34 + (g2^23*t^6.144)/g1^3 + (g1^2*t^6.16)/g2^4 + (g2^16*t^6.213)/g1^4 + (g1*t^6.23)/g2^11 + (g2^19*t^6.304)/g1 + (g2^12*t^6.373)/g1^2 + (2*g1^3*t^6.39)/g2^15 + (2*g2^35*t^6.517)/g1^5 + 2*g2^8*t^6.534 - (g2*t^6.603)/g1 + (2*g1^4*t^6.62)/g2^26 + (4*g1*t^6.763)/g2^3 + (g1^5*t^6.85)/g2^37 + (g2^20*t^6.907)/g1^2 + (g1^3*t^6.924)/g2^7 - (g2^13*t^6.976)/g1^3 + (g1^2*t^6.993)/g2^14 + (g2^43*t^7.051)/g1^5 + g2^16*t^7.067 + (g1^6*t^7.079)/g2^48 + (g2^36*t^7.12)/g1^6 + (2*g2^9*t^7.137)/g1 + (g1^4*t^7.154)/g2^18 + (g1^3*t^7.223)/g2^25 + 4*g1*g2^5*t^7.297 + (2*t^7.367)/g2^2 + (g2^28*t^7.441)/g1^2 + (g1^4*t^7.453)/g2^36 + (3*g2^21*t^7.51)/g1^3 + (2*g1^2*t^7.527)/g2^6 + (2*g2^17*t^7.671)/g1 + (g2^10*t^7.74)/g1^2 + (g1^3*t^7.757)/g2^17 + g1*g2^13*t^7.831 + 2*g2^6*t^7.9 - t^7.97/(g1*g2) + (2*g1^4*t^7.986)/g2^28 + (g2^56*t^8.027)/g1^8 + (3*g2^29*t^8.044)/g1^3 + g1^2*g2^2*t^8.061 + (g2^22*t^8.113)/g1^4 - (2*g1*t^8.13)/g2^5 + (g2^25*t^8.204)/g1 + (3*g2^18*t^8.274)/g1^2 + (g1^3*t^8.29)/g2^9 + (g2^11*t^8.343)/g1^3 - (4*g1^2*t^8.36)/g2^16 + (g2^41*t^8.417)/g1^5 + 2*g2^14*t^8.434 + (g1^6*t^8.446)/g2^50 - (6*g2^7*t^8.503)/g1 + (3*g1^4*t^8.52)/g2^20 + t^8.573/g1^2 + (2*g2^37*t^8.578)/g1^3 + (g1^3*t^8.59)/g2^27 + (g2^30*t^8.647)/g1^4 + 2*g1*g2^3*t^8.664 + (g2^23*t^8.716)/g1^5 + (2*g1^5*t^8.75)/g2^31 + (3*g2^26*t^8.807)/g1^2 + (g1^3*t^8.824)/g2 + (g2^19*t^8.877)/g1^3 + (2*g1^2*t^8.893)/g2^8 - (g1*t^8.963)/g2^15 + (2*g1^6*t^8.98)/g2^42 - t^4.367/(g2^2*y) - (g1*t^6.497)/(g2^7*y) - (g1^2*t^6.726)/(g2^18*y) - (g2^5*t^6.87)/(g1*y) + (g1^2*t^7.26)/(g2^10*y) - (g2^6*t^7.473)/(g1^2*y) + (g1^3*t^7.49)/(g2^21*y) + (2*g2^2*t^7.633)/y + (3*g1*t^7.863)/(g2^9*y) + (2*g2^14*t^8.007)/(g1^2*y) + (g2^10*t^8.167)/y + (2*g2^3*t^8.237)/(g1*y) + (2*g1*t^8.397)/(g2*y) + t^8.466/(g2^8*y) + (2*g2^22*t^8.54)/(g1^2*y) + (2*g2^15*t^8.61)/(g1^3*y) + (2*g2^11*t^8.77)/(g1*y) - (t^4.367*y)/g2^2 - (g1*t^6.497*y)/g2^7 - (g1^2*t^6.726*y)/g2^18 - (g2^5*t^6.87*y)/g1 + (g1^2*t^7.26*y)/g2^10 - (g2^6*t^7.473*y)/g1^2 + (g1^3*t^7.49*y)/g2^21 + 2*g2^2*t^7.633*y + (3*g1*t^7.863*y)/g2^9 + (2*g2^14*t^8.007*y)/g1^2 + g2^10*t^8.167*y + (2*g2^3*t^8.237*y)/g1 + (2*g1*t^8.397*y)/g2 + (t^8.466*y)/g2^8 + (2*g2^22*t^8.54*y)/g1^2 + (2*g2^15*t^8.61*y)/g1^3 + (2*g2^11*t^8.77*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47204 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}q_{2}$ + ${ }M_{6}\phi_{1}^{2}$ 0.6726 0.8389 0.8018 [M:[1.1599, 1.0455, 0.8401, 0.775, 0.7048, 1.0898], q:[0.3875, 0.4526], qb:[0.567, 0.7724], phi:[0.4551]] t^2.114 + t^2.325 + t^2.52 + t^3.059 + t^3.137 + t^3.269 + t^3.48 + t^3.69 + t^4.018 + t^4.081 + 2*t^4.229 + t^4.424 + t^4.439 + t^4.635 + t^4.65 + t^4.767 + t^4.845 + t^5.041 + t^5.173 + t^5.251 + 2*t^5.384 + t^5.579 + 2*t^5.594 + t^5.79 + t^5.805 - 2*t^6. - t^4.365/y - t^4.365*y detail