Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
4769 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}M_{7}$ + ${ }M_{3}M_{8}$ + ${ }M_{9}\phi_{1}^{2}$ | 0.6867 | 0.8631 | 0.7956 | [M:[1.0355, 0.7866, 0.9876, 0.8345, 1.1655, 0.71, 0.8345, 1.0124, 1.0889], q:[0.5712, 0.3933], qb:[0.4412, 0.7722], phi:[0.4555]] | [M:[[2, -14], [-2, -2], [-1, -15], [1, -1], [-1, 1], [-1, 5], [1, -1], [1, 15], [0, 8]], q:[[-1, 15], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[0, -4]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{7}$, ${ }M_{8}$, ${ }M_{1}$, ${ }M_{9}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{7}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}M_{8}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{8}$, ${ }M_{6}M_{9}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{7}$, ${ }M_{2}M_{9}$, ${ }M_{4}M_{9}$, ${ }M_{7}M_{9}$ | ${}$ | -3 | t^2.13 + t^2.36 + 2*t^2.503 + t^3.037 + t^3.107 + t^3.267 + t^3.726 + t^4.014 + t^4.03 + 2*t^4.26 + t^4.404 + t^4.49 + 2*t^4.633 + t^4.72 + t^4.794 + 2*t^4.863 + 3*t^5.007 + t^5.167 + t^5.237 + 2*t^5.397 + 2*t^5.54 + t^5.61 + t^5.627 + 2*t^5.77 - 3*t^6. + t^6.074 + t^6.086 + t^6.144 + t^6.16 + t^6.213 + t^6.23 + t^6.304 + t^6.373 + 2*t^6.39 + 2*t^6.517 + 2*t^6.534 - t^6.603 + 2*t^6.62 + 4*t^6.763 + t^6.85 + t^6.907 + t^6.924 - t^6.976 + t^6.993 + t^7.051 + t^7.067 + t^7.079 + t^7.12 + 2*t^7.137 + t^7.154 + t^7.223 + 4*t^7.297 + 2*t^7.367 + t^7.441 + t^7.453 + 3*t^7.51 + 2*t^7.527 + 2*t^7.671 + t^7.74 + t^7.757 + t^7.831 + 2*t^7.9 - t^7.97 + 2*t^7.986 + t^8.027 + 3*t^8.044 + t^8.061 + t^8.113 - 2*t^8.13 + t^8.204 + 3*t^8.274 + t^8.29 + t^8.343 - 4*t^8.36 + t^8.417 + 2*t^8.434 + t^8.446 - 6*t^8.503 + 3*t^8.52 + t^8.573 + 2*t^8.578 + t^8.59 + t^8.647 + 2*t^8.664 + t^8.716 + 2*t^8.75 + 3*t^8.807 + t^8.824 + t^8.877 + 2*t^8.893 - t^8.963 + 2*t^8.98 - t^4.367/y - t^6.497/y - t^6.726/y - t^6.87/y + t^7.26/y - t^7.473/y + t^7.49/y + (2*t^7.633)/y + (3*t^7.863)/y + (2*t^8.007)/y + t^8.167/y + (2*t^8.237)/y + (2*t^8.397)/y + t^8.466/y + (2*t^8.54)/y + (2*t^8.61)/y + (2*t^8.77)/y - t^4.367*y - t^6.497*y - t^6.726*y - t^6.87*y + t^7.26*y - t^7.473*y + t^7.49*y + 2*t^7.633*y + 3*t^7.863*y + 2*t^8.007*y + t^8.167*y + 2*t^8.237*y + 2*t^8.397*y + t^8.466*y + 2*t^8.54*y + 2*t^8.61*y + 2*t^8.77*y | (g2^5*t^2.13)/g1 + t^2.36/(g1^2*g2^2) + (2*g1*t^2.503)/g2 + g1*g2^15*t^3.037 + (g1^2*t^3.107)/g2^14 + g2^8*t^3.267 + t^3.726/(g1^2*g2^6) + (g1^4*t^4.014)/g2^4 + (g2^17*t^4.03)/g1 + (2*g2^10*t^4.26)/g1^2 + g1*g2^11*t^4.404 + (g2^3*t^4.49)/g1^3 + 2*g2^4*t^4.633 + t^4.72/(g1^4*g2^4) + (g2^26*t^4.794)/g1^2 + (2*t^4.863)/(g1*g2^3) + (3*g1^2*t^5.007)/g2^2 + g2^20*t^5.167 + (g1*t^5.237)/g2^9 + (2*g2^13*t^5.397)/g1 + 2*g1^2*g2^14*t^5.54 + (g1^3*t^5.61)/g2^15 + (g2^6*t^5.627)/g1^2 + 2*g1*g2^7*t^5.77 - 3*t^6. + g1^2*g2^30*t^6.074 + t^6.086/(g1^4*g2^8) + g1^3*g2*t^6.144 + (g2^22*t^6.16)/g1^2 + (g1^4*t^6.213)/g2^28 + t^6.23/(g1*g2^7) + g1*g2^23*t^6.304 + (g1^2*t^6.373)/g2^6 + (2*g2^15*t^6.39)/g1^3 + (2*g1^5*t^6.517)/g2^5 + 2*g2^16*t^6.534 - (g1*t^6.603)/g2^13 + (2*g2^8*t^6.62)/g1^4 + (4*g2^9*t^6.763)/g1 + (g2*t^6.85)/g1^5 + g1^2*g2^10*t^6.907 + (g2^31*t^6.924)/g1^3 - (g1^3*t^6.976)/g2^19 + (g2^2*t^6.993)/g1^2 + g1^5*g2^11*t^7.051 + g2^32*t^7.067 + t^7.079/(g1^6*g2^6) + (g1^6*t^7.12)/g2^18 + 2*g1*g2^3*t^7.137 + (g2^24*t^7.154)/g1^4 + t^7.223/(g1^3*g2^5) + (4*g2^25*t^7.297)/g1 + (2*t^7.367)/g2^4 + g1^2*g2^26*t^7.441 + t^7.453/(g1^4*g2^12) + (3*g1^3*t^7.51)/g2^3 + (2*g2^18*t^7.527)/g1^2 + 2*g1*g2^19*t^7.671 + (g1^2*t^7.74)/g2^10 + (g2^11*t^7.757)/g1^3 + (g2^41*t^7.831)/g1 + 2*g2^12*t^7.9 - (g1*t^7.97)/g2^17 + (2*g2^4*t^7.986)/g1^4 + (g1^8*t^8.027)/g2^8 + 3*g1^3*g2^13*t^8.044 + (g2^34*t^8.061)/g1^2 + (g1^4*t^8.113)/g2^16 - (2*g2^5*t^8.13)/g1 + g1*g2^35*t^8.204 + 3*g1^2*g2^6*t^8.274 + (g2^27*t^8.29)/g1^3 + (g1^3*t^8.343)/g2^23 - (4*t^8.36)/(g1^2*g2^2) + g1^5*g2^7*t^8.417 + 2*g2^28*t^8.434 + t^8.446/(g1^6*g2^10) - (6*g1*t^8.503)/g2 + (3*g2^20*t^8.52)/g1^4 + (g1^2*t^8.573)/g2^30 + 2*g1^3*g2^29*t^8.578 + t^8.59/(g1^3*g2^9) + g1^4*t^8.647 + (2*g2^21*t^8.664)/g1 + (g1^5*t^8.716)/g2^29 + (2*g2^13*t^8.75)/g1^5 + 3*g1^2*g2^22*t^8.807 + (g2^43*t^8.824)/g1^3 + (g1^3*t^8.877)/g2^7 + (2*g2^14*t^8.893)/g1^2 - t^8.963/(g1*g2^15) + (2*g2^6*t^8.98)/g1^6 - t^4.367/(g2^4*y) - (g2*t^6.497)/(g1*y) - t^6.726/(g1^2*g2^6*y) - (g1*t^6.87)/(g2^5*y) + (g2^10*t^7.26)/(g1^2*y) - (g1^2*t^7.473)/(g2^18*y) + (g2^3*t^7.49)/(g1^3*y) + (2*g2^4*t^7.633)/y + (3*t^7.863)/(g1*g2^3*y) + (2*g1^2*t^8.007)/(g2^2*y) + (g2^20*t^8.167)/y + (2*g1*t^8.237)/(g2^9*y) + (2*g2^13*t^8.397)/(g1*y) + t^8.466/(g2^16*y) + (2*g1^2*g2^14*t^8.54)/y + (2*g1^3*t^8.61)/(g2^15*y) + (2*g1*g2^7*t^8.77)/y - (t^4.367*y)/g2^4 - (g2*t^6.497*y)/g1 - (t^6.726*y)/(g1^2*g2^6) - (g1*t^6.87*y)/g2^5 + (g2^10*t^7.26*y)/g1^2 - (g1^2*t^7.473*y)/g2^18 + (g2^3*t^7.49*y)/g1^3 + 2*g2^4*t^7.633*y + (3*t^7.863*y)/(g1*g2^3) + (2*g1^2*t^8.007*y)/g2^2 + g2^20*t^8.167*y + (2*g1*t^8.237*y)/g2^9 + (2*g2^13*t^8.397*y)/g1 + (t^8.466*y)/g2^16 + 2*g1^2*g2^14*t^8.54*y + (2*g1^3*t^8.61*y)/g2^15 + 2*g1*g2^7*t^8.77*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2637 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}M_{7}$ + ${ }M_{3}M_{8}$ | 0.6955 | 0.8765 | 0.7936 | [M:[1.013, 0.7766, 0.9542, 0.8354, 1.1646, 0.7172, 0.8354, 1.0458], q:[0.5987, 0.3883], qb:[0.4471, 0.7763], phi:[0.4474]] | t^2.152 + t^2.33 + 2*t^2.506 + t^2.684 + t^3.039 + t^3.137 + t^3.672 + t^4.025 + t^4.125 + 2*t^4.303 + t^4.48 + t^4.481 + 2*t^4.658 + t^4.66 + 3*t^4.836 + t^4.934 + 3*t^5.012 + t^5.014 + 3*t^5.191 + t^5.289 + t^5.369 + t^5.467 + t^5.545 + 2*t^5.644 + t^5.723 + t^5.822 - 3*t^6. - t^4.342/y - t^4.342*y | detail |