Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55232 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}^{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ | 0.6534 | 0.8707 | 0.7504 | [M:[0.9534, 0.8029, 0.8602, 1.1398, 0.6738, 0.7097], q:[0.7384, 0.3082], qb:[0.4588, 0.4014], phi:[0.5233]] | [M:[[-4], [26], [-12], [12], [-28], [18]], q:[[-1], [5]], qb:[[-25], [13]], phi:[[2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }M_{6}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}M_{5}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{4}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}q_{2}^{2}$, ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}M_{3}M_{4}$ | 0 | t^2.022 + 2*t^2.129 + t^2.301 + t^2.409 + t^2.581 + t^2.86 + t^3.14 + 2*t^3.419 + t^3.699 + t^4.043 + 3*t^4.151 + 3*t^4.258 + 2*t^4.323 + 3*t^4.43 + 2*t^4.538 + 2*t^4.602 + 3*t^4.71 + t^4.817 + 2*t^4.882 + 3*t^4.989 + 3*t^5.161 + 3*t^5.269 + 4*t^5.441 + 4*t^5.548 + 3*t^5.72 + 3*t^5.828 + t^6.065 + t^6.107 + 2*t^6.172 + 5*t^6.28 + 2*t^6.344 + 4*t^6.387 + 4*t^6.452 + 7*t^6.559 + 3*t^6.624 + 3*t^6.667 + 5*t^6.731 + 7*t^6.839 + 4*t^6.903 + 2*t^6.946 + 4*t^7.011 + 6*t^7.118 + 4*t^7.183 + t^7.226 + 5*t^7.29 + 5*t^7.398 + 6*t^7.462 + 7*t^7.57 + 7*t^7.677 + 5*t^7.742 + 6*t^7.849 + 5*t^7.957 + t^8.022 + t^8.086 + t^8.129 + 2*t^8.194 + 3*t^8.237 + 3*t^8.301 + 2*t^8.366 + 5*t^8.409 + 4*t^8.473 + 6*t^8.516 + 5*t^8.581 + 4*t^8.645 + 9*t^8.688 + 5*t^8.753 + 4*t^8.796 + 6*t^8.86 + 5*t^8.925 + 11*t^8.968 - t^4.57/y - t^6.591/y - t^6.699/y - t^6.978/y + (2*t^7.151)/y + t^7.258/y + t^7.323/y + (3*t^7.43)/y + (2*t^7.538)/y + t^7.602/y + (3*t^7.71)/y + (2*t^7.882)/y + (3*t^7.989)/y + (3*t^8.161)/y + (3*t^8.269)/y + (5*t^8.441)/y + (6*t^8.548)/y - t^8.613/y + (3*t^8.72)/y + (3*t^8.828)/y - t^4.57*y - t^6.591*y - t^6.699*y - t^6.978*y + 2*t^7.151*y + t^7.258*y + t^7.323*y + 3*t^7.43*y + 2*t^7.538*y + t^7.602*y + 3*t^7.71*y + 2*t^7.882*y + 3*t^7.989*y + 3*t^8.161*y + 3*t^8.269*y + 5*t^8.441*y + 6*t^8.548*y - t^8.613*y + 3*t^8.72*y + 3*t^8.828*y | t^2.022/g1^28 + 2*g1^18*t^2.129 + t^2.301/g1^20 + g1^26*t^2.409 + t^2.581/g1^12 + t^2.86/g1^4 + g1^4*t^3.14 + 2*g1^12*t^3.419 + g1^20*t^3.699 + t^4.043/g1^56 + (3*t^4.151)/g1^10 + 3*g1^36*t^4.258 + (2*t^4.323)/g1^48 + (3*t^4.43)/g1^2 + 2*g1^44*t^4.538 + (2*t^4.602)/g1^40 + 3*g1^6*t^4.71 + g1^52*t^4.817 + (2*t^4.882)/g1^32 + 3*g1^14*t^4.989 + (3*t^5.161)/g1^24 + 3*g1^22*t^5.269 + (4*t^5.441)/g1^16 + 4*g1^30*t^5.548 + (3*t^5.72)/g1^8 + 3*g1^38*t^5.828 + t^6.065/g1^84 + g1^46*t^6.107 + (2*t^6.172)/g1^38 + 5*g1^8*t^6.28 + (2*t^6.344)/g1^76 + 4*g1^54*t^6.387 + (4*t^6.452)/g1^30 + 7*g1^16*t^6.559 + (3*t^6.624)/g1^68 + 3*g1^62*t^6.667 + (5*t^6.731)/g1^22 + 7*g1^24*t^6.839 + (4*t^6.903)/g1^60 + 2*g1^70*t^6.946 + (4*t^7.011)/g1^14 + 6*g1^32*t^7.118 + (4*t^7.183)/g1^52 + g1^78*t^7.226 + (5*t^7.29)/g1^6 + 5*g1^40*t^7.398 + (6*t^7.462)/g1^44 + 7*g1^2*t^7.57 + 7*g1^48*t^7.677 + (5*t^7.742)/g1^36 + 6*g1^10*t^7.849 + 5*g1^56*t^7.957 + t^8.022/g1^28 + t^8.086/g1^112 + g1^18*t^8.129 + (2*t^8.194)/g1^66 + 3*g1^64*t^8.237 + (3*t^8.301)/g1^20 + (2*t^8.366)/g1^104 + 5*g1^26*t^8.409 + (4*t^8.473)/g1^58 + 6*g1^72*t^8.516 + (5*t^8.581)/g1^12 + (4*t^8.645)/g1^96 + 9*g1^34*t^8.688 + (5*t^8.753)/g1^50 + 4*g1^80*t^8.796 + (6*t^8.86)/g1^4 + (5*t^8.925)/g1^88 + 11*g1^42*t^8.968 - (g1^2*t^4.57)/y - t^6.591/(g1^26*y) - (g1^20*t^6.699)/y - (g1^28*t^6.978)/y + (2*t^7.151)/(g1^10*y) + (g1^36*t^7.258)/y + t^7.323/(g1^48*y) + (3*t^7.43)/(g1^2*y) + (2*g1^44*t^7.538)/y + t^7.602/(g1^40*y) + (3*g1^6*t^7.71)/y + (2*t^7.882)/(g1^32*y) + (3*g1^14*t^7.989)/y + (3*t^8.161)/(g1^24*y) + (3*g1^22*t^8.269)/y + (5*t^8.441)/(g1^16*y) + (6*g1^30*t^8.548)/y - t^8.613/(g1^54*y) + (3*t^8.72)/(g1^8*y) + (3*g1^38*t^8.828)/y - g1^2*t^4.57*y - (t^6.591*y)/g1^26 - g1^20*t^6.699*y - g1^28*t^6.978*y + (2*t^7.151*y)/g1^10 + g1^36*t^7.258*y + (t^7.323*y)/g1^48 + (3*t^7.43*y)/g1^2 + 2*g1^44*t^7.538*y + (t^7.602*y)/g1^40 + 3*g1^6*t^7.71*y + (2*t^7.882*y)/g1^32 + 3*g1^14*t^7.989*y + (3*t^8.161*y)/g1^24 + 3*g1^22*t^8.269*y + (5*t^8.441*y)/g1^16 + 6*g1^30*t^8.548*y - (t^8.613*y)/g1^54 + (3*t^8.72*y)/g1^8 + 3*g1^38*t^8.828*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46967 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}^{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{2}^{2}$ | 0.6331 | 0.8324 | 0.7605 | [M:[0.9527, 0.8076, 0.858, 1.142, 0.6687], q:[0.7382, 0.3092], qb:[0.4542, 0.4038], phi:[0.5237]] | t^2.006 + t^2.139 + t^2.29 + t^2.423 + t^2.574 + t^2.858 + t^3.142 + 2*t^3.426 + t^3.71 + t^3.861 + t^4.012 + 2*t^4.145 + t^4.278 + 2*t^4.296 + 2*t^4.429 + t^4.562 + 2*t^4.58 + 2*t^4.713 + t^4.846 + 2*t^4.864 + 2*t^4.997 + 3*t^5.148 + 2*t^5.281 + 4*t^5.432 + 2*t^5.565 + 3*t^5.716 + 2*t^5.849 + t^5.867 + t^6. - t^4.571/y - t^4.571*y | detail |