Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5094 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{1}M_{6}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{8}\phi_{1}q_{1}\tilde{q}_{2}$ 0.6534 0.8707 0.7504 [M:[1.2903, 0.8029, 0.9534, 1.1398, 0.8602, 0.7097, 0.6738, 0.7097], q:[0.3082, 0.4014], qb:[0.7384, 0.4588], phi:[0.5233]] [M:[[18], [-26], [4], [-12], [12], [-18], [28], [-18]], q:[[-5], [-13]], qb:[[1], [25]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{6}$, ${ }M_{8}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }M_{5}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{7}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{7}M_{8}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{8}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{8}$, ${ }M_{5}M_{7}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}M_{8}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{3}M_{8}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{4}M_{7}$, ${ }M_{7}\phi_{1}q_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}M_{8}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}q_{1}^{2}$, ${ }M_{8}\phi_{1}q_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}q_{1}q_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{3}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}q_{1}^{2}$, ${ }M_{6}\phi_{1}q_{1}q_{2}$, ${ }M_{8}\phi_{1}q_{1}q_{2}$ ${}M_{5}\phi_{1}q_{1}^{2}$ 0 t^2.022 + 2*t^2.129 + t^2.301 + t^2.409 + t^2.581 + t^2.86 + t^3.14 + 2*t^3.419 + t^3.699 + t^4.043 + 3*t^4.151 + 3*t^4.258 + 2*t^4.323 + 3*t^4.43 + 2*t^4.538 + 2*t^4.602 + 3*t^4.71 + t^4.817 + 2*t^4.882 + 3*t^4.989 + 3*t^5.161 + 3*t^5.269 + 4*t^5.441 + 4*t^5.548 + 3*t^5.72 + 3*t^5.828 + t^6.065 + t^6.107 + 2*t^6.172 + 5*t^6.28 + 2*t^6.344 + 4*t^6.387 + 4*t^6.452 + 7*t^6.559 + 3*t^6.624 + 3*t^6.667 + 5*t^6.731 + 7*t^6.839 + 4*t^6.903 + 2*t^6.946 + 4*t^7.011 + 6*t^7.118 + 4*t^7.183 + t^7.226 + 5*t^7.29 + 5*t^7.398 + 6*t^7.462 + 7*t^7.57 + 7*t^7.677 + 5*t^7.742 + 6*t^7.849 + 5*t^7.957 + t^8.022 + t^8.086 + t^8.129 + 2*t^8.194 + 3*t^8.237 + 3*t^8.301 + 2*t^8.366 + 5*t^8.409 + 4*t^8.473 + 6*t^8.516 + 5*t^8.581 + 4*t^8.645 + 9*t^8.688 + 5*t^8.753 + 4*t^8.796 + 6*t^8.86 + 5*t^8.925 + 11*t^8.968 - t^4.57/y - t^6.591/y - t^6.699/y - t^6.978/y + (2*t^7.151)/y + t^7.258/y + t^7.323/y + (3*t^7.43)/y + (2*t^7.538)/y + t^7.602/y + (3*t^7.71)/y + (2*t^7.882)/y + (3*t^7.989)/y + (3*t^8.161)/y + (3*t^8.269)/y + (5*t^8.441)/y + (6*t^8.548)/y - t^8.613/y + (3*t^8.72)/y + (3*t^8.828)/y - t^4.57*y - t^6.591*y - t^6.699*y - t^6.978*y + 2*t^7.151*y + t^7.258*y + t^7.323*y + 3*t^7.43*y + 2*t^7.538*y + t^7.602*y + 3*t^7.71*y + 2*t^7.882*y + 3*t^7.989*y + 3*t^8.161*y + 3*t^8.269*y + 5*t^8.441*y + 6*t^8.548*y - t^8.613*y + 3*t^8.72*y + 3*t^8.828*y g1^28*t^2.022 + (2*t^2.129)/g1^18 + g1^20*t^2.301 + t^2.409/g1^26 + g1^12*t^2.581 + g1^4*t^2.86 + t^3.14/g1^4 + (2*t^3.419)/g1^12 + t^3.699/g1^20 + g1^56*t^4.043 + 3*g1^10*t^4.151 + (3*t^4.258)/g1^36 + 2*g1^48*t^4.323 + 3*g1^2*t^4.43 + (2*t^4.538)/g1^44 + 2*g1^40*t^4.602 + (3*t^4.71)/g1^6 + t^4.817/g1^52 + 2*g1^32*t^4.882 + (3*t^4.989)/g1^14 + 3*g1^24*t^5.161 + (3*t^5.269)/g1^22 + 4*g1^16*t^5.441 + (4*t^5.548)/g1^30 + 3*g1^8*t^5.72 + (3*t^5.828)/g1^38 + g1^84*t^6.065 + t^6.107/g1^46 + 2*g1^38*t^6.172 + (5*t^6.28)/g1^8 + 2*g1^76*t^6.344 + (4*t^6.387)/g1^54 + 4*g1^30*t^6.452 + (7*t^6.559)/g1^16 + 3*g1^68*t^6.624 + (3*t^6.667)/g1^62 + 5*g1^22*t^6.731 + (7*t^6.839)/g1^24 + 4*g1^60*t^6.903 + (2*t^6.946)/g1^70 + 4*g1^14*t^7.011 + (6*t^7.118)/g1^32 + 4*g1^52*t^7.183 + t^7.226/g1^78 + 5*g1^6*t^7.29 + (5*t^7.398)/g1^40 + 6*g1^44*t^7.462 + (7*t^7.57)/g1^2 + (7*t^7.677)/g1^48 + 5*g1^36*t^7.742 + (6*t^7.849)/g1^10 + (5*t^7.957)/g1^56 + g1^28*t^8.022 + g1^112*t^8.086 + t^8.129/g1^18 + 2*g1^66*t^8.194 + (3*t^8.237)/g1^64 + 3*g1^20*t^8.301 + 2*g1^104*t^8.366 + (5*t^8.409)/g1^26 + 4*g1^58*t^8.473 + (6*t^8.516)/g1^72 + 5*g1^12*t^8.581 + 4*g1^96*t^8.645 + (9*t^8.688)/g1^34 + 5*g1^50*t^8.753 + (4*t^8.796)/g1^80 + 6*g1^4*t^8.86 + 5*g1^88*t^8.925 + (11*t^8.968)/g1^42 - t^4.57/(g1^2*y) - (g1^26*t^6.591)/y - t^6.699/(g1^20*y) - t^6.978/(g1^28*y) + (2*g1^10*t^7.151)/y + t^7.258/(g1^36*y) + (g1^48*t^7.323)/y + (3*g1^2*t^7.43)/y + (2*t^7.538)/(g1^44*y) + (g1^40*t^7.602)/y + (3*t^7.71)/(g1^6*y) + (2*g1^32*t^7.882)/y + (3*t^7.989)/(g1^14*y) + (3*g1^24*t^8.161)/y + (3*t^8.269)/(g1^22*y) + (5*g1^16*t^8.441)/y + (6*t^8.548)/(g1^30*y) - (g1^54*t^8.613)/y + (3*g1^8*t^8.72)/y + (3*t^8.828)/(g1^38*y) - (t^4.57*y)/g1^2 - g1^26*t^6.591*y - (t^6.699*y)/g1^20 - (t^6.978*y)/g1^28 + 2*g1^10*t^7.151*y + (t^7.258*y)/g1^36 + g1^48*t^7.323*y + 3*g1^2*t^7.43*y + (2*t^7.538*y)/g1^44 + g1^40*t^7.602*y + (3*t^7.71*y)/g1^6 + 2*g1^32*t^7.882*y + (3*t^7.989*y)/g1^14 + 3*g1^24*t^8.161*y + (3*t^8.269*y)/g1^22 + 5*g1^16*t^8.441*y + (6*t^8.548*y)/g1^30 - g1^54*t^8.613*y + 3*g1^8*t^8.72*y + (3*t^8.828*y)/g1^38


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3207 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{1}M_{6}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ 0.6331 0.8324 0.7605 [M:[1.287, 0.8076, 0.9527, 1.142, 0.858, 0.713, 0.6687], q:[0.3092, 0.4038], qb:[0.7382, 0.4542], phi:[0.5237]] t^2.006 + t^2.139 + t^2.29 + t^2.423 + t^2.574 + t^2.858 + t^3.142 + 2*t^3.426 + t^3.71 + t^3.861 + t^4.012 + 2*t^4.145 + t^4.278 + 2*t^4.296 + 2*t^4.429 + t^4.562 + 2*t^4.58 + 2*t^4.713 + t^4.846 + 2*t^4.864 + 2*t^4.997 + 3*t^5.148 + 2*t^5.281 + 4*t^5.432 + 2*t^5.565 + 3*t^5.716 + 2*t^5.849 + t^5.867 + t^6. - t^4.571/y - t^4.571*y detail