Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55123 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{2}M_{6}$ + ${ }M_{1}M_{7}$ 0.71 0.8743 0.8121 [M:[1.0345, 1.0587, 0.9655, 0.8481, 0.9413, 0.9413, 0.9655], q:[0.424, 0.5415], qb:[0.5172, 0.6105], phi:[0.4767]] [M:[[8, 0], [-12, 4], [-8, 0], [16, -8], [12, -4], [12, -4], [-8, 0]], q:[[8, -4], [-16, 4]], qb:[[4, 0], [0, 4]], phi:[[1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{5}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{7}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{7}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{5}M_{7}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}^{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}^{2}$ ${}$ -4 t^2.544 + 2*t^2.824 + t^2.86 + 2*t^2.897 + t^3.383 + t^3.974 + t^4.254 + t^4.327 + 2*t^4.534 + t^4.606 + t^4.679 + t^4.813 + t^4.886 + t^5.088 + t^5.093 + 2*t^5.368 + t^5.404 + t^5.441 + 2*t^5.648 + 2*t^5.684 + 3*t^5.72 + 2*t^5.757 + 2*t^5.793 - 4*t^6. - t^6.073 + t^6.207 + t^6.243 - t^6.28 - t^6.352 + t^6.519 - t^6.559 + t^6.766 + 3*t^6.798 + t^6.835 + 2*t^6.871 + 3*t^7.078 + 2*t^7.15 + t^7.187 + 2*t^7.223 + 4*t^7.357 + t^7.394 + 2*t^7.43 + 2*t^7.503 + t^7.539 + 2*t^7.575 + t^7.633 + 2*t^7.637 - t^7.673 - t^7.819 + 2*t^7.912 + 3*t^7.917 + 2*t^7.949 + t^7.985 - t^8.026 + 2*t^8.192 + t^8.196 + 3*t^8.228 - t^8.233 + t^8.265 + 2*t^8.301 + t^8.337 + 2*t^8.472 + t^8.476 + 4*t^8.508 - t^8.544 + 4*t^8.581 + 3*t^8.617 + 3*t^8.653 + 2*t^8.69 + 2*t^8.788 - 10*t^8.824 - 2*t^8.86 - 8*t^8.897 - 2*t^8.969 - t^4.43/y - t^6.974/y - t^7.254/y - t^7.29/y - t^7.327/y + t^7.534/y + t^7.57/y + t^7.606/y + t^7.886/y + (2*t^8.368)/y + t^8.404/y + (2*t^8.441)/y + t^8.648/y + (2*t^8.684)/y + (4*t^8.72)/y + (2*t^8.757)/y + t^8.793/y + t^8.927/y - t^4.43*y - t^6.974*y - t^7.254*y - t^7.29*y - t^7.327*y + t^7.534*y + t^7.57*y + t^7.606*y + t^7.886*y + 2*t^8.368*y + t^8.404*y + 2*t^8.441*y + t^8.648*y + 2*t^8.684*y + 4*t^8.72*y + 2*t^8.757*y + t^8.793*y + t^8.927*y (g1^16*t^2.544)/g2^8 + (2*g1^12*t^2.824)/g2^4 + (g1^2*t^2.86)/g2^2 + (2*t^2.897)/g1^8 + g1^4*g2^4*t^3.383 + (g1^17*t^3.974)/g2^9 + (g1^13*t^4.254)/g2^5 + t^4.327/(g1^7*g2) + (2*g1^9*t^4.534)/g2 + (g2^3*t^4.606)/g1^11 + (g2^7*t^4.679)/g1^31 + g1^5*g2^3*t^4.813 + (g2^7*t^4.886)/g1^15 + (g1^32*t^5.088)/g2^16 + g1*g2^7*t^5.093 + (2*g1^28*t^5.368)/g2^12 + (g1^18*t^5.404)/g2^10 + (g1^8*t^5.441)/g2^8 + (2*g1^24*t^5.648)/g2^8 + (2*g1^14*t^5.684)/g2^6 + (3*g1^4*t^5.72)/g2^4 + (2*t^5.757)/(g1^6*g2^2) + (2*t^5.793)/g1^16 - 4*t^6. - (g2^4*t^6.073)/g1^20 + g1^16*t^6.207 + g1^6*g2^2*t^6.243 - (g2^4*t^6.28)/g1^4 - (g2^8*t^6.352)/g1^24 + (g1^33*t^6.519)/g2^17 - (g2^8*t^6.559)/g1^8 + g1^8*g2^8*t^6.766 + (3*g1^29*t^6.798)/g2^13 + (g1^19*t^6.835)/g2^11 + (2*g1^9*t^6.871)/g2^9 + (3*g1^25*t^7.078)/g2^9 + (2*g1^5*t^7.15)/g2^5 + t^7.187/(g1^5*g2^3) + (2*t^7.223)/(g1^15*g2) + (4*g1^21*t^7.357)/g2^5 + (g1^11*t^7.394)/g2^3 + (2*g1*t^7.43)/g2 + (2*g2^3*t^7.503)/g1^19 + (g2^5*t^7.539)/g1^29 + (2*g2^7*t^7.575)/g1^39 + (g1^48*t^7.633)/g2^24 + (2*g1^17*t^7.637)/g2 - g1^7*g2*t^7.673 - (g2^9*t^7.819)/g1^33 + (2*g1^44*t^7.912)/g2^20 + 3*g1^13*g2^3*t^7.917 + (2*g1^34*t^7.949)/g2^18 + (g1^24*t^7.985)/g2^16 - (g2^9*t^8.026)/g1^17 + (2*g1^40*t^8.192)/g2^16 + g1^9*g2^7*t^8.196 + (3*g1^30*t^8.228)/g2^14 - (g2^9*t^8.233)/g1 + (g1^20*t^8.265)/g2^12 + (2*g1^10*t^8.301)/g2^10 + t^8.337/g2^8 + (2*g1^36*t^8.472)/g2^12 + g1^5*g2^11*t^8.476 + (4*g1^26*t^8.508)/g2^10 - (g1^16*t^8.544)/g2^8 + (4*g1^6*t^8.581)/g2^6 + (3*t^8.617)/(g1^4*g2^4) + (3*t^8.653)/(g1^14*g2^2) + (2*t^8.69)/g1^24 + (2*g1^22*t^8.788)/g2^6 - (10*g1^12*t^8.824)/g2^4 - (2*g1^2*t^8.86)/g2^2 - (8*t^8.897)/g1^8 - (2*g2^4*t^8.969)/g1^28 - (g1*t^4.43)/(g2*y) - (g1^17*t^6.974)/(g2^9*y) - (g1^13*t^7.254)/(g2^5*y) - (g1^3*t^7.29)/(g2^3*y) - t^7.327/(g1^7*g2*y) + (g1^9*t^7.534)/(g2*y) + (g2*t^7.57)/(g1*y) + (g2^3*t^7.606)/(g1^11*y) + (g2^7*t^7.886)/(g1^15*y) + (2*g1^28*t^8.368)/(g2^12*y) + (g1^18*t^8.404)/(g2^10*y) + (2*g1^8*t^8.441)/(g2^8*y) + (g1^24*t^8.648)/(g2^8*y) + (2*g1^14*t^8.684)/(g2^6*y) + (4*g1^4*t^8.72)/(g2^4*y) + (2*t^8.757)/(g1^6*g2^2*y) + t^8.793/(g1^16*y) + (g1^20*t^8.927)/(g2^4*y) - (g1*t^4.43*y)/g2 - (g1^17*t^6.974*y)/g2^9 - (g1^13*t^7.254*y)/g2^5 - (g1^3*t^7.29*y)/g2^3 - (t^7.327*y)/(g1^7*g2) + (g1^9*t^7.534*y)/g2 + (g2*t^7.57*y)/g1 + (g2^3*t^7.606*y)/g1^11 + (g2^7*t^7.886*y)/g1^15 + (2*g1^28*t^8.368*y)/g2^12 + (g1^18*t^8.404*y)/g2^10 + (2*g1^8*t^8.441*y)/g2^8 + (g1^24*t^8.648*y)/g2^8 + (2*g1^14*t^8.684*y)/g2^6 + (4*g1^4*t^8.72*y)/g2^4 + (2*t^8.757*y)/(g1^6*g2^2) + (t^8.793*y)/g1^16 + (g1^20*t^8.927*y)/g2^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
56779 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{2}M_{6}$ + ${ }M_{1}M_{7}$ + ${ }M_{8}\phi_{1}q_{1}^{2}$ 0.7308 0.9154 0.7983 [M:[1.0343, 1.0576, 0.9657, 0.8505, 0.9424, 0.9424, 0.9657, 0.6725], q:[0.4252, 0.5405], qb:[0.5172, 0.6091], phi:[0.477]] t^2.017 + t^2.551 + 2*t^2.827 + t^2.862 + 2*t^2.897 + t^3.379 + t^4.035 + t^4.258 + t^4.328 + 2*t^4.534 + t^4.569 + t^4.604 + t^4.674 + t^4.81 + 2*t^4.845 + 2*t^4.88 + 2*t^4.915 + t^5.085 + t^5.103 + 2*t^5.379 + t^5.396 + t^5.414 + t^5.449 + 2*t^5.654 + 2*t^5.689 + 3*t^5.724 + 2*t^5.759 + 2*t^5.794 - 4*t^6. - t^4.431/y - t^4.431*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47052 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{2}M_{6}$ 0.708 0.8721 0.8119 [M:[1.0068, 1.0721, 0.9932, 0.8491, 0.9279, 0.9279], q:[0.4245, 0.5687], qb:[0.5034, 0.5822], phi:[0.4803]] t^2.547 + 2*t^2.784 + t^2.882 + t^2.98 + t^3.02 + t^3.257 + t^3.988 + t^4.225 + t^4.421 + 2*t^4.461 + t^4.657 + t^4.698 + t^4.853 + t^4.894 + t^4.934 + t^5.095 + 2*t^5.331 + t^5.429 + 3*t^5.568 + 2*t^5.666 + t^5.764 + 2*t^5.804 + t^5.861 + t^5.902 - 3*t^6. - t^4.441/y - t^4.441*y detail