Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47052 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ M_2M_5$ + $ M_2M_6$ 0.708 0.8721 0.8119 [X:[], M:[1.0068, 1.0721, 0.9932, 0.8491, 0.9279, 0.9279], q:[0.4245, 0.5687], qb:[0.5034, 0.5822], phi:[0.4803]] [X:[], M:[[8, 0], [-12, 4], [-8, 0], [16, -8], [12, -4], [12, -4]], q:[[8, -4], [-16, 4]], qb:[[4, 0], [0, 4]], phi:[[1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ M_5$, $ M_6$, $ \phi_1^2$, $ M_3$, $ M_1$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_4^2$, $ M_4M_5$, $ M_4M_6$, $ M_4\phi_1^2$, $ M_1M_4$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ M_3M_5$, $ M_3M_6$, $ \phi_1^4$, $ M_1M_5$, $ M_1M_6$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_3\phi_1^2$, $ M_1\phi_1^2$ . -3 t^2.55 + 2*t^2.78 + t^2.88 + t^2.98 + t^3.02 + t^3.26 + t^3.99 + t^4.22 + t^4.42 + 2*t^4.46 + t^4.66 + t^4.7 + t^4.85 + t^4.89 + t^4.93 + t^5.09 + 2*t^5.33 + t^5.43 + 3*t^5.57 + 2*t^5.67 + t^5.76 + 2*t^5.8 + t^5.86 + t^5.9 - 3*t^6. + 2*t^6.04 + t^6.14 - t^6.2 - 2*t^6.24 + t^6.28 - t^6.43 - t^6.47 + t^6.51 + t^6.54 + 3*t^6.77 + t^6.87 + t^6.97 + 4*t^7.01 + t^7.2 + 5*t^7.24 + t^7.3 + t^7.34 + t^7.4 + t^7.44 + 4*t^7.48 - t^7.58 + 2*t^7.64 + 4*t^7.72 + t^7.73 + t^7.83 + 2*t^7.88 + 2*t^7.95 - t^7.97 + 2*t^7.98 - t^8.01 - t^8.05 + 3*t^8.11 + t^8.19 + 3*t^8.21 - t^8.31 + 4*t^8.35 + t^8.41 + 5*t^8.45 - 3*t^8.55 + 3*t^8.59 + 2*t^8.65 + 4*t^8.69 - 9*t^8.78 + 3*t^8.82 + t^8.84 - t^8.88 + 5*t^8.92 - 4*t^8.98 - t^4.44/y - t^6.99/y - t^7.22/y - t^7.32/y + t^7.56/y + t^7.66/y + t^7.89/y + (2*t^8.33)/y + t^8.43/y + t^8.53/y + (2*t^8.57)/y + (2*t^8.67)/y + (2*t^8.76)/y + (3*t^8.8)/y + t^8.86/y + t^8.9/y - t^4.44*y - t^6.99*y - t^7.22*y - t^7.32*y + t^7.56*y + t^7.66*y + t^7.89*y + 2*t^8.33*y + t^8.43*y + t^8.53*y + 2*t^8.57*y + 2*t^8.67*y + 2*t^8.76*y + 3*t^8.8*y + t^8.86*y + t^8.9*y (g1^16*t^2.55)/g2^8 + (2*g1^12*t^2.78)/g2^4 + (g1^2*t^2.88)/g2^2 + t^2.98/g1^8 + g1^8*t^3.02 + g1^4*g2^4*t^3.26 + (g1^17*t^3.99)/g2^9 + (g1^13*t^4.22)/g2^5 + t^4.42/(g1^7*g2) + (2*g1^9*t^4.46)/g2 + (g2^3*t^4.66)/g1^11 + g1^5*g2^3*t^4.7 + (g2^7*t^4.85)/g1^31 + (g2^7*t^4.89)/g1^15 + g1*g2^7*t^4.93 + (g1^32*t^5.09)/g2^16 + (2*g1^28*t^5.33)/g2^12 + (g1^18*t^5.43)/g2^10 + (3*g1^24*t^5.57)/g2^8 + (2*g1^14*t^5.67)/g2^6 + (g1^4*t^5.76)/g2^4 + (2*g1^20*t^5.8)/g2^4 + t^5.86/(g1^6*g2^2) + (g1^10*t^5.9)/g2^2 - 3*t^6. + 2*g1^16*t^6.04 + g1^6*g2^2*t^6.14 - (g2^4*t^6.2)/g1^20 - (2*g2^4*t^6.24)/g1^4 + g1^12*g2^4*t^6.28 - (g2^8*t^6.43)/g1^24 - (g2^8*t^6.47)/g1^8 + g1^8*g2^8*t^6.51 + (g1^33*t^6.54)/g2^17 + (3*g1^29*t^6.77)/g2^13 + (g1^19*t^6.87)/g2^11 + (g1^9*t^6.97)/g2^9 + (4*g1^25*t^7.01)/g2^9 + (g1^5*t^7.2)/g2^5 + (5*g1^21*t^7.24)/g2^5 + t^7.3/(g1^5*g2^3) + (g1^11*t^7.34)/g2^3 + t^7.4/(g1^15*g2) + (g1*t^7.44)/g2 + (4*g1^17*t^7.48)/g2 - g1^7*g2*t^7.58 + (g1^48*t^7.64)/g2^24 + (g2^3*t^7.64)/g1^19 + 4*g1^13*g2^3*t^7.72 + (g2^5*t^7.73)/g1^29 + (g2^7*t^7.83)/g1^39 + (2*g1^44*t^7.88)/g2^20 + 2*g1^9*g2^7*t^7.95 - (g2^9*t^7.97)/g1^33 + (2*g1^34*t^7.98)/g2^18 - (g2^9*t^8.01)/g1^17 - (g2^9*t^8.05)/g1 + (3*g1^40*t^8.11)/g2^16 + g1^5*g2^11*t^8.19 + (3*g1^30*t^8.21)/g2^14 - (g1^20*t^8.31)/g2^12 + (4*g1^36*t^8.35)/g2^12 + (g1^10*t^8.41)/g2^10 + (5*g1^26*t^8.45)/g2^10 - (3*g1^16*t^8.55)/g2^8 + (3*g1^32*t^8.59)/g2^8 + (2*g1^6*t^8.65)/g2^6 + (4*g1^22*t^8.69)/g2^6 - (9*g1^12*t^8.78)/g2^4 + (3*g1^28*t^8.82)/g2^4 + t^8.84/(g1^14*g2^2) - (g1^2*t^8.88)/g2^2 + (5*g1^18*t^8.92)/g2^2 - (4*t^8.98)/g1^8 - (g1*t^4.44)/(g2*y) - (g1^17*t^6.99)/(g2^9*y) - (g1^13*t^7.22)/(g2^5*y) - (g1^3*t^7.32)/(g2^3*y) + (g2*t^7.56)/(g1*y) + (g2^3*t^7.66)/(g1^11*y) + (g2^7*t^7.89)/(g1^15*y) + (2*g1^28*t^8.33)/(g2^12*y) + (g1^18*t^8.43)/(g2^10*y) + (g1^8*t^8.53)/(g2^8*y) + (2*g1^24*t^8.57)/(g2^8*y) + (2*g1^14*t^8.67)/(g2^6*y) + (2*g1^4*t^8.76)/(g2^4*y) + (3*g1^20*t^8.8)/(g2^4*y) + t^8.86/(g1^6*g2^2*y) + (g1^10*t^8.9)/(g2^2*y) - (g1*t^4.44*y)/g2 - (g1^17*t^6.99*y)/g2^9 - (g1^13*t^7.22*y)/g2^5 - (g1^3*t^7.32*y)/g2^3 + (g2*t^7.56*y)/g1 + (g2^3*t^7.66*y)/g1^11 + (g2^7*t^7.89*y)/g1^15 + (2*g1^28*t^8.33*y)/g2^12 + (g1^18*t^8.43*y)/g2^10 + (g1^8*t^8.53*y)/g2^8 + (2*g1^24*t^8.57*y)/g2^8 + (2*g1^14*t^8.67*y)/g2^6 + (2*g1^4*t^8.76*y)/g2^4 + (3*g1^20*t^8.8*y)/g2^4 + (t^8.86*y)/(g1^6*g2^2) + (g1^10*t^8.9*y)/g2^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55123 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ M_2M_5$ + $ M_2M_6$ + $ M_1M_7$ 0.71 0.8743 0.8121 [X:[], M:[1.0345, 1.0587, 0.9655, 0.8481, 0.9413, 0.9413, 0.9655], q:[0.424, 0.5415], qb:[0.5172, 0.6105], phi:[0.4767]] t^2.54 + 2*t^2.82 + t^2.86 + 2*t^2.9 + t^3.38 + t^3.97 + t^4.25 + t^4.33 + 2*t^4.53 + t^4.61 + t^4.68 + t^4.81 + t^4.89 + 2*t^5.09 + 2*t^5.37 + t^5.4 + t^5.44 + 2*t^5.65 + 2*t^5.68 + 3*t^5.72 + 2*t^5.76 + 2*t^5.79 - 4*t^6. - t^4.43/y - t^4.43*y detail
55245 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ M_2M_5$ + $ M_2M_6$ + $ M_4\phi_1^2$ 0.6914 0.848 0.8153 [X:[], M:[0.9958, 1.0025, 1.0042, 0.9992, 0.9975, 0.9975], q:[0.4996, 0.5047], qb:[0.4979, 0.4962], phi:[0.5004]] t^2.98 + 3*t^2.99 + 2*t^3. + t^3.01 + 2*t^4.48 + 3*t^4.49 + 2*t^4.5 + 2*t^4.51 + t^4.53 + t^5.96 + 3*t^5.97 + 6*t^5.98 + 3*t^5.99 - 2*t^6. - t^4.5/y - t^4.5*y detail
55226 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ M_2M_5$ + $ M_2M_6$ + $ M_7\phi_1q_1^2$ 0.7289 0.9135 0.7979 [X:[], M:[1.0067, 1.0715, 0.9933, 0.8502, 0.9285, 0.9285, 0.6694], q:[0.4251, 0.5682], qb:[0.5033, 0.5816], phi:[0.4804]] t^2.01 + t^2.55 + 2*t^2.79 + t^2.88 + t^2.98 + t^3.02 + t^3.25 + t^4.02 + t^4.23 + t^4.42 + 2*t^4.46 + t^4.56 + t^4.66 + t^4.7 + 2*t^4.79 + t^4.85 + 2*t^4.89 + t^4.93 + t^4.99 + t^5.03 + t^5.1 + t^5.26 + 2*t^5.34 + t^5.43 + 3*t^5.57 + 2*t^5.67 + t^5.77 + 2*t^5.81 + t^5.86 + t^5.9 - 3*t^6. - t^4.44/y - t^4.44*y detail
55054 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ M_2M_5$ + $ M_2M_6$ + $ M_7\phi_1^2$ 0.7046 0.8662 0.8135 [X:[], M:[0.9999, 1.0679, 1.0001, 0.8644, 0.9321, 0.9321, 1.0339], q:[0.4322, 0.5679], qb:[0.4999, 0.5677], phi:[0.4831]] t^2.59 + 2*t^2.8 + 2*t^3. + t^3.1 + t^3.2 + t^4.04 + t^4.25 + 3*t^4.45 + 2*t^4.65 + 3*t^4.86 + t^5.19 + 2*t^5.39 + 3*t^5.59 + t^5.69 + 2*t^5.8 + 2*t^5.9 - t^6. - t^4.45/y - t^4.45*y detail
50910 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ M_2M_5$ + $ M_2M_6$ + $ \phi_1q_2^2$ 0.6707 0.8503 0.7887 [X:[], M:[0.8749, 1.1963, 1.1251, 0.7324, 0.8037, 0.8037], q:[0.3662, 0.7589], qb:[0.4374, 0.5087], phi:[0.4822]] t^2.2 + 2*t^2.41 + t^2.62 + t^2.84 + t^2.89 + t^3.38 + t^3.64 + t^3.86 + 2*t^4.07 + t^4.28 + t^4.39 + t^4.5 + 2*t^4.61 + 4*t^4.82 + 3*t^5.04 + t^5.09 + 3*t^5.25 + 2*t^5.3 + t^5.46 + t^5.52 + t^5.68 + t^5.73 + t^5.79 + t^5.84 - 2*t^6. - t^4.45/y - t^4.45*y detail
51779 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ M_2M_5$ + $ M_2M_6$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_4X_1$ 0.5654 0.7 0.8078 [X:[1.3415], M:[1.2705, 1.0355, 0.7295, 0.6585, 0.9645, 0.9645], q:[0.3292, 0.4003], qb:[0.6352, 0.9413], phi:[0.4235]] t^2.19 + t^2.54 + 2*t^2.89 + t^3.25 + t^3.46 + t^3.67 + t^3.81 + t^4.02 + t^4.38 + 2*t^4.73 + 3*t^5.08 + 2*t^5.43 + 3*t^5.79 + t^5.86 - t^6. - t^4.27/y - t^4.27*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46737 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ M_2M_5$ 0.7024 0.8607 0.8161 [X:[], M:[1.02, 1.0504, 0.98, 0.8793, 0.9496], q:[0.4396, 0.5404], qb:[0.51, 0.5803], phi:[0.4824]] t^2.64 + t^2.85 + t^2.89 + t^2.94 + t^3.06 + t^3.15 + t^3.27 + t^4.09 + t^4.3 + t^4.39 + 2*t^4.51 + t^4.6 + t^4.69 + t^4.72 + t^4.81 + t^4.93 + t^5.28 + t^5.49 + t^5.53 + t^5.7 + t^5.74 + t^5.79 + t^5.83 + t^5.91 + t^5.95 - 2*t^6. - t^4.45/y - t^4.45*y detail