Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5451 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_3M_5$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_6q_1\tilde{q}_2$ + $ M_7q_1\tilde{q}_2$ + $ M_8\phi_1q_1\tilde{q}_1$ 0.6925 0.8913 0.777 [X:[1.618], M:[0.8541, 0.6738, 1.1459, 0.382, 0.8541, 0.7189, 0.7189, 0.7639], q:[0.4045, 0.7414], qb:[0.4496, 0.8766], phi:[0.382]] [X:[[4]], M:[[12], [-28], [-12], [-4], [12], [-18], [-18], [-8]], q:[[1], [-13]], qb:[[11], [17]], phi:[[-4]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_6$, $ M_7$, $ M_8$, $ \phi_1^2$, $ M_1$, $ M_5$, $ \phi_1q_1^2$, $ q_2\tilde{q}_1$, $ M_2^2$, $ M_2M_6$, $ M_2M_7$, $ M_6^2$, $ M_6M_7$, $ M_7^2$, $ M_2M_8$, $ M_2\phi_1^2$, $ M_6M_8$, $ M_7M_8$, $ M_6\phi_1^2$, $ M_7\phi_1^2$, $ M_1M_2$, $ M_2M_5$, $ M_8^2$, $ M_8\phi_1^2$, $ \phi_1^4$, $ \phi_1q_1q_2$, $ M_1M_6$, $ M_5M_6$, $ M_1M_7$, $ M_5M_7$, $ \phi_1q_2\tilde{q}_1$, $ M_1M_8$, $ M_5M_8$, $ M_1\phi_1^2$, $ M_5\phi_1^2$, $ X_1$, $ M_1^2$, $ M_1M_5$, $ M_5^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2\phi_1q_1^2$, $ \phi_1q_2^2$, $ M_6\phi_1q_1^2$, $ M_7\phi_1q_1^2$, $ M_6q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ M_8\phi_1q_1^2$, $ \phi_1^3q_1^2$, $ M_8q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$ . -3 t^2.02 + 2*t^2.16 + 2*t^2.29 + 2*t^2.56 + 2*t^3.57 + t^4.04 + 2*t^4.18 + 5*t^4.31 + 4*t^4.45 + 5*t^4.58 + 4*t^4.72 + 5*t^4.85 + 3*t^5.12 + 2*t^5.59 + 3*t^5.73 + 2*t^5.86 - 3*t^6. + t^6.06 + 2*t^6.14 + 2*t^6.2 - t^6.27 + 5*t^6.33 + 8*t^6.47 + 11*t^6.61 + 10*t^6.74 + 14*t^6.88 + 8*t^7.01 + 11*t^7.15 + 2*t^7.28 + 4*t^7.42 - 2*t^7.55 + 2*t^7.62 + 3*t^7.69 + 3*t^7.75 + 6*t^7.89 - t^8.02 + t^8.09 - 2*t^8.16 + 2*t^8.22 - 5*t^8.29 + 5*t^8.36 - 2*t^8.43 + 8*t^8.49 - 10*t^8.56 + 16*t^8.63 + 18*t^8.76 - 3*t^8.83 + 23*t^8.9 - t^4.15/y - t^6.17/y - (2*t^6.3)/y - (2*t^6.44)/y - t^6.71/y + (2*t^7.18)/y + (3*t^7.31)/y + (4*t^7.45)/y + (4*t^7.58)/y + (4*t^7.72)/y + (6*t^7.85)/y + (2*t^7.99)/y + (2*t^8.12)/y - t^8.19/y - (2*t^8.32)/y - (5*t^8.46)/y - (2*t^8.59)/y + (2*t^8.86)/y - t^4.15*y - t^6.17*y - 2*t^6.3*y - 2*t^6.44*y - t^6.71*y + 2*t^7.18*y + 3*t^7.31*y + 4*t^7.45*y + 4*t^7.58*y + 4*t^7.72*y + 6*t^7.85*y + 2*t^7.99*y + 2*t^8.12*y - t^8.19*y - 2*t^8.32*y - 5*t^8.46*y - 2*t^8.59*y + 2*t^8.86*y t^2.02/g1^28 + (2*t^2.16)/g1^18 + (2*t^2.29)/g1^8 + 2*g1^12*t^2.56 + (2*t^3.57)/g1^2 + t^4.04/g1^56 + (2*t^4.18)/g1^46 + (5*t^4.31)/g1^36 + (4*t^4.45)/g1^26 + (5*t^4.58)/g1^16 + (4*t^4.72)/g1^6 + 5*g1^4*t^4.85 + 3*g1^24*t^5.12 + (2*t^5.59)/g1^30 + (3*t^5.73)/g1^20 + (2*t^5.86)/g1^10 - 3*t^6. + t^6.06/g1^84 + 2*g1^10*t^6.14 + (2*t^6.2)/g1^74 - g1^20*t^6.27 + (5*t^6.33)/g1^64 + (8*t^6.47)/g1^54 + (11*t^6.61)/g1^44 + (10*t^6.74)/g1^34 + (14*t^6.88)/g1^24 + (8*t^7.01)/g1^14 + (11*t^7.15)/g1^4 + 2*g1^6*t^7.28 + 4*g1^16*t^7.42 - 2*g1^26*t^7.55 + (2*t^7.62)/g1^58 + 3*g1^36*t^7.69 + (3*t^7.75)/g1^48 + (6*t^7.89)/g1^38 - t^8.02/g1^28 + t^8.09/g1^112 - (2*t^8.16)/g1^18 + (2*t^8.22)/g1^102 - (5*t^8.29)/g1^8 + (5*t^8.36)/g1^92 - 2*g1^2*t^8.43 + (8*t^8.49)/g1^82 - 10*g1^12*t^8.56 + (16*t^8.63)/g1^72 + (18*t^8.76)/g1^62 - 3*g1^32*t^8.83 + (23*t^8.9)/g1^52 - t^4.15/(g1^4*y) - t^6.17/(g1^32*y) - (2*t^6.3)/(g1^22*y) - (2*t^6.44)/(g1^12*y) - (g1^8*t^6.71)/y + (2*t^7.18)/(g1^46*y) + (3*t^7.31)/(g1^36*y) + (4*t^7.45)/(g1^26*y) + (4*t^7.58)/(g1^16*y) + (4*t^7.72)/(g1^6*y) + (6*g1^4*t^7.85)/y + (2*g1^14*t^7.99)/y + (2*g1^24*t^8.12)/y - t^8.19/(g1^60*y) - (2*t^8.32)/(g1^50*y) - (5*t^8.46)/(g1^40*y) - (2*t^8.59)/(g1^30*y) + (2*t^8.86)/(g1^10*y) - (t^4.15*y)/g1^4 - (t^6.17*y)/g1^32 - (2*t^6.3*y)/g1^22 - (2*t^6.44*y)/g1^12 - g1^8*t^6.71*y + (2*t^7.18*y)/g1^46 + (3*t^7.31*y)/g1^36 + (4*t^7.45*y)/g1^26 + (4*t^7.58*y)/g1^16 + (4*t^7.72*y)/g1^6 + 6*g1^4*t^7.85*y + 2*g1^14*t^7.99*y + 2*g1^24*t^8.12*y - (t^8.19*y)/g1^60 - (2*t^8.32*y)/g1^50 - (5*t^8.46*y)/g1^40 - (2*t^8.59*y)/g1^30 + (2*t^8.86*y)/g1^10


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3858 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_3M_5$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_6q_1\tilde{q}_2$ + $ M_7q_1\tilde{q}_2$ 0.6741 0.8576 0.7861 [X:[1.6169], M:[0.8507, 0.6818, 1.1493, 0.3831, 0.8507, 0.724, 0.724], q:[0.4042, 0.7451], qb:[0.4464, 0.8718], phi:[0.3831]] t^2.05 + 2*t^2.17 + t^2.3 + 2*t^2.55 + 2*t^3.57 + t^3.7 + t^4.09 + 2*t^4.22 + 4*t^4.34 + 2*t^4.47 + 3*t^4.6 + 4*t^4.72 + 3*t^4.85 + 3*t^5.1 + 2*t^5.62 + 4*t^5.75 + 2*t^5.87 - 2*t^6. - t^4.15/y - t^4.15*y detail