Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3848 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_3M_5$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_7\phi_1q_1\tilde{q}_1$ + $ M_8q_1\tilde{q}_2$ 0.6925 0.8913 0.777 [X:[1.618], M:[0.8541, 0.6738, 1.1459, 0.382, 0.8541, 0.7189, 0.7639, 0.7189], q:[0.4045, 0.7414], qb:[0.4496, 0.8766], phi:[0.382]] [X:[[0, 1]], M:[[0, 3], [0, -7], [0, -3], [0, -1], [0, 3], [2, -13], [0, -2], [-2, 4]], q:[[1, -4], [-1, 1]], qb:[[-1, 7], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_6$, $ M_8$, $ M_7$, $ \phi_1^2$, $ M_1$, $ M_5$, $ \phi_1q_1^2$, $ q_2\tilde{q}_1$, $ M_2^2$, $ M_2M_6$, $ M_2M_8$, $ M_6^2$, $ M_2M_7$, $ M_6M_8$, $ M_2\phi_1^2$, $ M_8^2$, $ M_6M_7$, $ M_6\phi_1^2$, $ M_7M_8$, $ M_8\phi_1^2$, $ M_1M_2$, $ M_2M_5$, $ M_7^2$, $ M_7\phi_1^2$, $ \phi_1^4$, $ \phi_1q_1q_2$, $ M_1M_6$, $ M_5M_6$, $ M_1M_8$, $ M_5M_8$, $ \phi_1q_2\tilde{q}_1$, $ M_1M_7$, $ M_5M_7$, $ M_1\phi_1^2$, $ M_5\phi_1^2$, $ X_1$, $ M_1^2$, $ M_1M_5$, $ M_5^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2\phi_1q_1^2$, $ \phi_1q_2^2$, $ M_6\phi_1q_1^2$, $ M_8\phi_1q_1^2$, $ M_6q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ M_7\phi_1q_1^2$, $ \phi_1^3q_1^2$, $ M_7q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$ . -3 t^2.02 + 2*t^2.16 + 2*t^2.29 + 2*t^2.56 + 2*t^3.57 + t^4.04 + 2*t^4.18 + 5*t^4.31 + 4*t^4.45 + 5*t^4.58 + 4*t^4.72 + 5*t^4.85 + 3*t^5.12 + 2*t^5.59 + 3*t^5.73 + 2*t^5.86 - 3*t^6. + t^6.06 + 2*t^6.14 + 2*t^6.2 - t^6.27 + 5*t^6.33 + 8*t^6.47 + 11*t^6.61 + 10*t^6.74 + 14*t^6.88 + 8*t^7.01 + 11*t^7.15 + 2*t^7.28 + 4*t^7.42 - 2*t^7.55 + 2*t^7.62 + 3*t^7.69 + 3*t^7.75 + 6*t^7.89 - t^8.02 + t^8.09 - 2*t^8.16 + 2*t^8.22 - 5*t^8.29 + 5*t^8.36 - 2*t^8.43 + 8*t^8.49 - 10*t^8.56 + 16*t^8.63 + 18*t^8.76 - 3*t^8.83 + 23*t^8.9 - t^4.15/y - t^6.17/y - (2*t^6.3)/y - (2*t^6.44)/y - t^6.71/y + (2*t^7.18)/y + (3*t^7.31)/y + (4*t^7.45)/y + (4*t^7.58)/y + (4*t^7.72)/y + (6*t^7.85)/y + (2*t^7.99)/y + (2*t^8.12)/y - t^8.19/y - (2*t^8.32)/y - (5*t^8.46)/y - (2*t^8.59)/y + (2*t^8.86)/y - t^4.15*y - t^6.17*y - 2*t^6.3*y - 2*t^6.44*y - t^6.71*y + 2*t^7.18*y + 3*t^7.31*y + 4*t^7.45*y + 4*t^7.58*y + 4*t^7.72*y + 6*t^7.85*y + 2*t^7.99*y + 2*t^8.12*y - t^8.19*y - 2*t^8.32*y - 5*t^8.46*y - 2*t^8.59*y + 2*t^8.86*y t^2.02/g2^7 + (g1^2*t^2.16)/g2^13 + (g2^4*t^2.16)/g1^2 + (2*t^2.29)/g2^2 + 2*g2^3*t^2.56 + (g1^2*t^3.57)/g2^9 + (g2^8*t^3.57)/g1^2 + t^4.04/g2^14 + (g1^2*t^4.18)/g2^20 + t^4.18/(g1^2*g2^3) + (g1^4*t^4.31)/g2^26 + (3*t^4.31)/g2^9 + (g2^8*t^4.31)/g1^4 + (2*g1^2*t^4.45)/g2^15 + (2*g2^2*t^4.45)/g1^2 + (5*t^4.58)/g2^4 + (2*g1^2*t^4.72)/g2^10 + (2*g2^7*t^4.72)/g1^2 + 5*g2*t^4.85 + 3*g2^6*t^5.12 + (g1^2*t^5.59)/g2^16 + (g2*t^5.59)/g1^2 + (g1^4*t^5.73)/g2^22 + t^5.73/g2^5 + (g2^12*t^5.73)/g1^4 + (g1^2*t^5.86)/g2^11 + (g2^6*t^5.86)/g1^2 - 3*t^6. + t^6.06/g2^21 + (g1^2*t^6.14)/g2^6 + (g2^11*t^6.14)/g1^2 + (g1^2*t^6.2)/g2^27 + t^6.2/(g1^2*g2^10) - g2^5*t^6.27 + (g1^4*t^6.33)/g2^33 + (3*t^6.33)/g2^16 + (g2*t^6.33)/g1^4 + (g1^6*t^6.47)/g2^39 + (3*g1^2*t^6.47)/g2^22 + (3*t^6.47)/(g1^2*g2^5) + (g2^12*t^6.47)/g1^6 + (2*g1^4*t^6.61)/g2^28 + (7*t^6.61)/g2^11 + (2*g2^6*t^6.61)/g1^4 + (5*t^6.74)/g1^2 + (5*g1^2*t^6.74)/g2^17 + (2*g1^4*t^6.88)/g2^23 + (10*t^6.88)/g2^6 + (2*g2^11*t^6.88)/g1^4 + (4*g1^2*t^7.01)/g2^12 + (4*g2^5*t^7.01)/g1^2 + (g1^4*t^7.15)/g2^18 + (9*t^7.15)/g2 + (g2^16*t^7.15)/g1^4 + (g1^2*t^7.28)/g2^7 + (g2^10*t^7.28)/g1^2 + 4*g2^4*t^7.42 - (g1^2*t^7.55)/g2^2 - (g2^15*t^7.55)/g1^2 + (g1^2*t^7.62)/g2^23 + t^7.62/(g1^2*g2^6) + 3*g2^9*t^7.69 + (g1^4*t^7.75)/g2^29 + t^7.75/g2^12 + (g2^5*t^7.75)/g1^4 + (g1^6*t^7.89)/g2^35 + (2*g1^2*t^7.89)/g2^18 + (2*t^7.89)/(g1^2*g2) + (g2^16*t^7.89)/g1^6 + (g1^4*t^8.02)/g2^24 - (3*t^8.02)/g2^7 + (g2^10*t^8.02)/g1^4 + t^8.09/g2^28 - (g1^2*t^8.16)/g2^13 - (g2^4*t^8.16)/g1^2 + (g1^2*t^8.22)/g2^34 + t^8.22/(g1^2*g2^17) + (g1^4*t^8.29)/g2^19 - (7*t^8.29)/g2^2 + (g2^15*t^8.29)/g1^4 + (g1^4*t^8.36)/g2^40 + (3*t^8.36)/g2^23 + t^8.36/(g1^4*g2^6) - (g1^2*t^8.43)/g2^8 - (g2^9*t^8.43)/g1^2 + (g1^6*t^8.49)/g2^46 + (3*g1^2*t^8.49)/g2^29 + (3*t^8.49)/(g1^2*g2^12) + (g2^5*t^8.49)/g1^6 - 10*g2^3*t^8.56 + (g1^8*t^8.63)/g2^52 + (3*g1^4*t^8.63)/g2^35 + (8*t^8.63)/g2^18 + (3*t^8.63)/(g1^4*g2) + (g2^16*t^8.63)/g1^8 + (2*g1^6*t^8.76)/g2^41 + (7*g1^2*t^8.76)/g2^24 + (7*t^8.76)/(g1^2*g2^7) + (2*g2^10*t^8.76)/g1^6 - 3*g2^8*t^8.83 + (5*g1^4*t^8.9)/g2^30 + (13*t^8.9)/g2^13 + (5*g2^4*t^8.9)/g1^4 - t^4.15/(g2*y) - t^6.17/(g2^8*y) - (g1^2*t^6.3)/(g2^14*y) - (g2^3*t^6.3)/(g1^2*y) - (2*t^6.44)/(g2^3*y) - (g2^2*t^6.71)/y + (g1^2*t^7.18)/(g2^20*y) + t^7.18/(g1^2*g2^3*y) + (3*t^7.31)/(g2^9*y) + (2*g1^2*t^7.45)/(g2^15*y) + (2*g2^2*t^7.45)/(g1^2*y) + (4*t^7.58)/(g2^4*y) + (2*g1^2*t^7.72)/(g2^10*y) + (2*g2^7*t^7.72)/(g1^2*y) + (6*g2*t^7.85)/y + (g1^2*t^7.99)/(g2^5*y) + (g2^12*t^7.99)/(g1^2*y) + (2*g2^6*t^8.12)/y - t^8.19/(g2^15*y) - (g1^2*t^8.32)/(g2^21*y) - t^8.32/(g1^2*g2^4*y) - (g1^4*t^8.46)/(g2^27*y) - (3*t^8.46)/(g2^10*y) - (g2^7*t^8.46)/(g1^4*y) - (g1^2*t^8.59)/(g2^16*y) - (g2*t^8.59)/(g1^2*y) + (g1^4*t^8.73)/(g2^22*y) - (2*t^8.73)/(g2^5*y) + (g2^12*t^8.73)/(g1^4*y) + (g1^2*t^8.86)/(g2^11*y) + (g2^6*t^8.86)/(g1^2*y) - (t^4.15*y)/g2 - (t^6.17*y)/g2^8 - (g1^2*t^6.3*y)/g2^14 - (g2^3*t^6.3*y)/g1^2 - (2*t^6.44*y)/g2^3 - g2^2*t^6.71*y + (g1^2*t^7.18*y)/g2^20 + (t^7.18*y)/(g1^2*g2^3) + (3*t^7.31*y)/g2^9 + (2*g1^2*t^7.45*y)/g2^15 + (2*g2^2*t^7.45*y)/g1^2 + (4*t^7.58*y)/g2^4 + (2*g1^2*t^7.72*y)/g2^10 + (2*g2^7*t^7.72*y)/g1^2 + 6*g2*t^7.85*y + (g1^2*t^7.99*y)/g2^5 + (g2^12*t^7.99*y)/g1^2 + 2*g2^6*t^8.12*y - (t^8.19*y)/g2^15 - (g1^2*t^8.32*y)/g2^21 - (t^8.32*y)/(g1^2*g2^4) - (g1^4*t^8.46*y)/g2^27 - (3*t^8.46*y)/g2^10 - (g2^7*t^8.46*y)/g1^4 - (g1^2*t^8.59*y)/g2^16 - (g2*t^8.59*y)/g1^2 + (g1^4*t^8.73*y)/g2^22 - (2*t^8.73*y)/g2^5 + (g2^12*t^8.73*y)/g1^4 + (g1^2*t^8.86*y)/g2^11 + (g2^6*t^8.86*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3379 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_3M_5$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_7\phi_1q_1\tilde{q}_1$ 0.6728 0.8544 0.7875 [X:[1.6159], M:[0.8476, 0.6889, 1.1524, 0.3841, 0.8476, 0.7107, 0.7683], q:[0.395, 0.7573], qb:[0.4526, 0.8585], phi:[0.3841]] t^2.07 + t^2.13 + 2*t^2.3 + 2*t^2.54 + t^3.52 + t^3.63 + t^3.76 + t^4.13 + t^4.2 + t^4.26 + 2*t^4.37 + 2*t^4.44 + 5*t^4.61 + 2*t^4.68 + 5*t^4.85 + 3*t^5.09 + t^5.59 + t^5.65 + t^5.7 + 2*t^5.83 + t^5.89 + t^5.93 - 3*t^6. - t^4.15/y - t^4.15*y detail