Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
48258 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2^2$ + $ M_4\phi_1q_2^2$ + $ M_1M_5$ 0.6334 0.8272 0.7657 [X:[], M:[0.9496, 0.8278, 0.8487, 0.8487, 1.0504], q:[0.7374, 0.313], qb:[0.4348, 0.4139], phi:[0.5252]] [X:[], M:[[-4], [26], [-12], [-12], [4]], q:[[-1], [5]], qb:[[-25], [13]], phi:[[2]]]
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_2$, $ M_3$, $ M_4$, $ \tilde{q}_1\tilde{q}_2$, $ M_5$, $ \phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_2^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ M_2q_2\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ M_2^2$, $ M_2M_3$, $ M_2M_4$, $ \phi_1q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ \phi_1q_1\tilde{q}_1$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_5q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_2M_5$, $ M_2\phi_1^2$, $ M_3M_5$, $ M_4M_5$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$ $\phi_1q_2^2\tilde{q}_1\tilde{q}_2$ t^2.18 + t^2.24 + t^2.48 + 3*t^2.55 + 2*t^3.15 + t^3.76 + t^3.82 + t^4.06 + t^4.12 + t^4.18 + t^4.36 + t^4.42 + t^4.49 + t^4.66 + 4*t^4.73 + 3*t^4.79 + t^4.97 + 3*t^5.03 + 6*t^5.09 + 2*t^5.33 + 2*t^5.39 + t^5.63 + 4*t^5.7 - 2*t^6. + 2*t^6.24 + 5*t^6.3 + 3*t^6.37 + t^6.43 + 2*t^6.54 + 3*t^6.61 + 3*t^6.67 + 4*t^6.73 + t^6.85 + 3*t^6.91 + 3*t^6.97 + 2*t^7.03 + t^7.15 + 4*t^7.21 + 7*t^7.27 + 7*t^7.34 + t^7.45 + 4*t^7.51 + 4*t^7.58 + 10*t^7.64 + 2*t^7.82 + 4*t^7.88 + 3*t^7.94 + t^8. + 2*t^8.12 - t^8.18 + 4*t^8.24 + t^8.31 + t^8.37 + t^8.42 - t^8.48 - 6*t^8.55 + t^8.67 + 3*t^8.72 + 5*t^8.79 + 6*t^8.85 + 6*t^8.91 + 4*t^8.97 - t^4.58/y - t^7.06/y - (2*t^7.12)/y + (2*t^7.42)/y + t^7.66/y + (3*t^7.73)/y + (3*t^7.79)/y + (5*t^8.03)/y + (4*t^8.09)/y + (2*t^8.33)/y + (2*t^8.39)/y + (2*t^8.63)/y + (6*t^8.7)/y + t^8.94/y - t^4.58*y - t^7.06*y - 2*t^7.12*y + 2*t^7.42*y + t^7.66*y + 3*t^7.73*y + 3*t^7.79*y + 5*t^8.03*y + 4*t^8.09*y + 2*t^8.33*y + 2*t^8.39*y + 2*t^8.63*y + 6*t^8.7*y + t^8.94*y g1^18*t^2.18 + t^2.24/g1^20 + g1^26*t^2.48 + (3*t^2.55)/g1^12 + 2*g1^4*t^3.15 + g1^20*t^3.76 + t^3.82/g1^18 + g1^28*t^4.06 + t^4.12/g1^10 + t^4.18/g1^48 + g1^36*t^4.36 + t^4.42/g1^2 + t^4.49/g1^40 + g1^44*t^4.66 + 4*g1^6*t^4.73 + (3*t^4.79)/g1^32 + g1^52*t^4.97 + 3*g1^14*t^5.03 + (6*t^5.09)/g1^24 + 2*g1^22*t^5.33 + (2*t^5.39)/g1^16 + g1^30*t^5.63 + (4*t^5.7)/g1^8 - 2*t^6. + 2*g1^46*t^6.24 + 5*g1^8*t^6.3 + (3*t^6.37)/g1^30 + t^6.43/g1^68 + 2*g1^54*t^6.54 + 3*g1^16*t^6.61 + (3*t^6.67)/g1^22 + (4*t^6.73)/g1^60 + g1^62*t^6.85 + 3*g1^24*t^6.91 + (3*t^6.97)/g1^14 + (2*t^7.03)/g1^52 + g1^70*t^7.15 + 4*g1^32*t^7.21 + (7*t^7.27)/g1^6 + (7*t^7.34)/g1^44 + g1^78*t^7.45 + 4*g1^40*t^7.51 + 4*g1^2*t^7.58 + (10*t^7.64)/g1^36 + 2*g1^48*t^7.82 + 4*g1^10*t^7.88 + (3*t^7.94)/g1^28 + t^8./g1^66 + 2*g1^56*t^8.12 - g1^18*t^8.18 + (4*t^8.24)/g1^20 + t^8.31/g1^58 + t^8.37/g1^96 + g1^64*t^8.42 - g1^26*t^8.48 - (6*t^8.55)/g1^12 + t^8.67/g1^88 + 3*g1^72*t^8.72 + 5*g1^34*t^8.79 + (6*t^8.85)/g1^4 + (6*t^8.91)/g1^42 + (4*t^8.97)/g1^80 - (g1^2*t^4.58)/y - (g1^28*t^7.06)/y - (2*t^7.12)/(g1^10*y) + (2*t^7.42)/(g1^2*y) + (g1^44*t^7.66)/y + (3*g1^6*t^7.73)/y + (3*t^7.79)/(g1^32*y) + (5*g1^14*t^8.03)/y + (4*t^8.09)/(g1^24*y) + (2*g1^22*t^8.33)/y + (2*t^8.39)/(g1^16*y) + (2*g1^30*t^8.63)/y + (6*t^8.7)/(g1^8*y) + (g1^38*t^8.94)/y - g1^2*t^4.58*y - g1^28*t^7.06*y - (2*t^7.12*y)/g1^10 + (2*t^7.42*y)/g1^2 + g1^44*t^7.66*y + 3*g1^6*t^7.73*y + (3*t^7.79*y)/g1^32 + 5*g1^14*t^8.03*y + (4*t^8.09*y)/g1^24 + 2*g1^22*t^8.33*y + (2*t^8.39*y)/g1^16 + 2*g1^30*t^8.63*y + (6*t^8.7*y)/g1^8 + g1^38*t^8.94*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46507 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2^2$ + $ M_4\phi_1q_2^2$ 0.6381 0.8353 0.764 [X:[], M:[0.9488, 0.8329, 0.8463, 0.8463], q:[0.7372, 0.314], qb:[0.4299, 0.4165], phi:[0.5256]] t^2.19 + t^2.23 + t^2.5 + 3*t^2.54 + t^2.85 + t^3.15 + t^3.77 + t^3.81 + t^4.08 + t^4.12 + t^4.16 + t^4.38 + t^4.42 + t^4.46 + t^4.69 + 4*t^4.73 + 3*t^4.77 + t^5. + 4*t^5.04 + 7*t^5.08 + 2*t^5.35 + 4*t^5.39 + 2*t^5.69 - t^6. - t^4.58/y - t^4.58*y detail