Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3800 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5q_1\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6q_1\tilde{q}_2$ + $ M_7\phi_1q_2^2$ 0.6334 0.8272 0.7657 [X:[], M:[0.9496, 1.1513, 1.0504, 0.8487, 0.8487, 0.8278, 0.8487], q:[0.7374, 0.313], qb:[0.4139, 0.4348], phi:[0.5252]] [X:[], M:[[4], [-12], [-4], [12], [12], [-26], [12]], q:[[1], [-5]], qb:[[-13], [25]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_6$, $ M_4$, $ M_5$, $ M_7$, $ M_3$, $ \phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_1^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_6q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ M_6^2$, $ M_4M_6$, $ M_5M_6$, $ M_6M_7$, $ \phi_1q_1\tilde{q}_1$, $ M_4^2$, $ M_4M_5$, $ M_5^2$, $ M_4M_7$, $ M_5M_7$, $ M_7^2$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3M_6$, $ M_6\phi_1^2$, $ M_3M_4$, $ M_3M_5$, $ M_3M_7$, $ M_4\phi_1^2$, $ M_5\phi_1^2$, $ M_7\phi_1^2$ $\phi_1q_2^2\tilde{q}_1\tilde{q}_2$ -2 t^2.18 + t^2.24 + t^2.48 + 3*t^2.55 + 2*t^3.15 + t^3.76 + t^3.82 + t^4.06 + t^4.12 + t^4.18 + t^4.36 + t^4.42 + t^4.49 + t^4.66 + 4*t^4.73 + 3*t^4.79 + t^4.97 + 3*t^5.03 + 6*t^5.09 + 2*t^5.33 + 2*t^5.39 + t^5.63 + 4*t^5.7 - 2*t^6. + 2*t^6.24 + 5*t^6.3 + 3*t^6.37 + t^6.43 + 2*t^6.54 + 3*t^6.61 + 3*t^6.67 + 4*t^6.73 + t^6.85 + 3*t^6.91 + 3*t^6.97 + 2*t^7.03 + t^7.15 + 4*t^7.21 + 7*t^7.27 + 7*t^7.34 + t^7.45 + 4*t^7.51 + 4*t^7.58 + 10*t^7.64 + 2*t^7.82 + 4*t^7.88 + 3*t^7.94 + t^8. + 2*t^8.12 - t^8.18 + 4*t^8.24 + t^8.31 + t^8.37 + t^8.42 - t^8.48 - 6*t^8.55 + t^8.67 + 3*t^8.72 + 5*t^8.79 + 6*t^8.85 + 6*t^8.91 + 4*t^8.97 - t^4.58/y - t^7.06/y - (2*t^7.12)/y + (2*t^7.42)/y + t^7.66/y + (3*t^7.73)/y + (3*t^7.79)/y + (5*t^8.03)/y + (4*t^8.09)/y + (2*t^8.33)/y + (2*t^8.39)/y + (2*t^8.63)/y + (6*t^8.7)/y + t^8.94/y - t^4.58*y - t^7.06*y - 2*t^7.12*y + 2*t^7.42*y + t^7.66*y + 3*t^7.73*y + 3*t^7.79*y + 5*t^8.03*y + 4*t^8.09*y + 2*t^8.33*y + 2*t^8.39*y + 2*t^8.63*y + 6*t^8.7*y + t^8.94*y t^2.18/g1^18 + g1^20*t^2.24 + t^2.48/g1^26 + 3*g1^12*t^2.55 + (2*t^3.15)/g1^4 + t^3.76/g1^20 + g1^18*t^3.82 + t^4.06/g1^28 + g1^10*t^4.12 + g1^48*t^4.18 + t^4.36/g1^36 + g1^2*t^4.42 + g1^40*t^4.49 + t^4.66/g1^44 + (4*t^4.73)/g1^6 + 3*g1^32*t^4.79 + t^4.97/g1^52 + (3*t^5.03)/g1^14 + 6*g1^24*t^5.09 + (2*t^5.33)/g1^22 + 2*g1^16*t^5.39 + t^5.63/g1^30 + 4*g1^8*t^5.7 - 2*t^6. + (2*t^6.24)/g1^46 + (5*t^6.3)/g1^8 + 3*g1^30*t^6.37 + g1^68*t^6.43 + (2*t^6.54)/g1^54 + (3*t^6.61)/g1^16 + 3*g1^22*t^6.67 + 4*g1^60*t^6.73 + t^6.85/g1^62 + (3*t^6.91)/g1^24 + 3*g1^14*t^6.97 + 2*g1^52*t^7.03 + t^7.15/g1^70 + (4*t^7.21)/g1^32 + 7*g1^6*t^7.27 + 7*g1^44*t^7.34 + t^7.45/g1^78 + (4*t^7.51)/g1^40 + (4*t^7.58)/g1^2 + 10*g1^36*t^7.64 + (2*t^7.82)/g1^48 + (4*t^7.88)/g1^10 + 3*g1^28*t^7.94 + g1^66*t^8. + (2*t^8.12)/g1^56 - t^8.18/g1^18 + 4*g1^20*t^8.24 + g1^58*t^8.31 + g1^96*t^8.37 + t^8.42/g1^64 - t^8.48/g1^26 - 6*g1^12*t^8.55 + g1^88*t^8.67 + (3*t^8.72)/g1^72 + (5*t^8.79)/g1^34 + 6*g1^4*t^8.85 + 6*g1^42*t^8.91 + 4*g1^80*t^8.97 - t^4.58/(g1^2*y) - t^7.06/(g1^28*y) - (2*g1^10*t^7.12)/y + (2*g1^2*t^7.42)/y + t^7.66/(g1^44*y) + (3*t^7.73)/(g1^6*y) + (3*g1^32*t^7.79)/y + (5*t^8.03)/(g1^14*y) + (4*g1^24*t^8.09)/y + (2*t^8.33)/(g1^22*y) + (2*g1^16*t^8.39)/y + (2*t^8.63)/(g1^30*y) + (6*g1^8*t^8.7)/y + t^8.94/(g1^38*y) - (t^4.58*y)/g1^2 - (t^7.06*y)/g1^28 - 2*g1^10*t^7.12*y + 2*g1^2*t^7.42*y + (t^7.66*y)/g1^44 + (3*t^7.73*y)/g1^6 + 3*g1^32*t^7.79*y + (5*t^8.03*y)/g1^14 + 4*g1^24*t^8.09*y + (2*t^8.33*y)/g1^22 + 2*g1^16*t^8.39*y + (2*t^8.63*y)/g1^30 + 6*g1^8*t^8.7*y + (t^8.94*y)/g1^38


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3352 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5q_1\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6q_1\tilde{q}_2$ 0.6204 0.8049 0.7708 [X:[], M:[0.9515, 1.1454, 1.0485, 0.8546, 0.8546, 0.8151], q:[0.7379, 0.3106], qb:[0.4076, 0.447], phi:[0.5242]] t^2.15 + t^2.27 + t^2.45 + 2*t^2.56 + 2*t^3.15 + t^3.44 + t^3.73 + t^3.85 + t^4.02 + t^4.14 + t^4.25 + t^4.31 + t^4.43 + t^4.55 + t^4.6 + 3*t^4.72 + 2*t^4.84 + t^4.89 + 2*t^5.01 + 3*t^5.13 + 2*t^5.3 + 2*t^5.42 + 2*t^5.59 + 3*t^5.71 + t^5.88 - t^4.57/y - t^4.57*y detail