Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
48210 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_1\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_2^2$ 0.6591 0.8332 0.7911 [X:[1.6165], M:[0.3835, 0.6843, 1.1504, 0.8496, 0.6825, 0.7651], q:[0.8918, 0.7247], qb:[0.4239, 0.4257], phi:[0.3835]] [X:[[0, 1]], M:[[0, -1], [0, -7], [0, -3], [0, 3], [-2, -4], [-2, 1]], q:[[1, 4], [-1, -3]], qb:[[-1, 3], [1, 0]], phi:[[0, -1]]]
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_5$, $ \phi_1^2$, $ M_6$, $ M_4$, $ q_2\tilde{q}_1$, $ M_3$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ M_2M_5$, $ M_2^2$, $ M_5M_6$, $ M_2\phi_1^2$, $ M_2M_6$, $ M_5\phi_1^2$, $ M_6^2$, $ M_2M_4$, $ \phi_1^4$, $ \phi_1q_2\tilde{q}_2$, $ M_4M_5$, $ M_6\phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ M_4M_6$, $ M_4\phi_1^2$, $ X_1$, $ M_4^2$, $ \phi_1q_1\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ M_2M_3$, $ M_3M_5$, $ \phi_1q_2^2$, $ M_2q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_5\phi_1\tilde{q}_1^2$, $ M_3\phi_1^2$, $ M_2\phi_1\tilde{q}_1\tilde{q}_2$, $ M_3M_6$, $ \phi_1^2q_2\tilde{q}_1$, $ M_2\phi_1\tilde{q}_1^2$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$, $ M_4q_2\tilde{q}_1$, $ \phi_1^3\tilde{q}_1^2$, $ M_6\phi_1\tilde{q}_1\tilde{q}_2$, $ M_6\phi_1\tilde{q}_1^2$ $\phi_1^3\tilde{q}_1\tilde{q}_2$ 2*t^2.05 + 2*t^2.3 + t^2.55 + 2*t^3.45 + t^3.69 + t^3.7 + t^4.09 + t^4.1 + t^4.11 + t^4.34 + 3*t^4.35 + t^4.59 + 4*t^4.6 + t^4.84 + 2*t^4.85 + t^5.1 + t^5.49 + 3*t^5.5 + 2*t^5.74 + 4*t^5.75 + 3*t^5.99 - t^6. - t^6.01 + t^6.14 + 2*t^6.15 + t^6.16 + t^6.24 - t^6.25 + t^6.39 + 4*t^6.4 + t^6.41 + 4*t^6.64 + 5*t^6.65 + 4*t^6.89 + 7*t^6.9 + 5*t^7.14 + t^7.15 - t^7.16 + 2*t^7.39 - 3*t^7.4 + t^7.54 + 4*t^7.55 + t^7.56 - t^7.65 + 6*t^7.79 + 3*t^7.8 + t^7.81 + 6*t^8.04 - t^8.05 - t^8.06 + t^8.19 + 2*t^8.2 + 2*t^8.21 + t^8.28 + 3*t^8.29 - 3*t^8.3 - 2*t^8.31 + 3*t^8.44 + 4*t^8.45 + t^8.46 + 2*t^8.54 - 7*t^8.55 + 4*t^8.69 + 7*t^8.7 + 2*t^8.71 + t^8.79 - 3*t^8.8 + t^8.93 + 10*t^8.94 + 5*t^8.95 + 3*t^8.96 - t^4.15/y - (2*t^6.2)/y - (2*t^6.45)/y + t^7.1/y + t^7.34/y + (3*t^7.35)/y + (3*t^7.6)/y + t^7.84/y + (2*t^7.85)/y + t^7.86/y + (2*t^8.1)/y - (2*t^8.25)/y - t^8.26/y + t^8.74/y + (4*t^8.75)/y + (4*t^8.99)/y - t^4.15*y - 2*t^6.2*y - 2*t^6.45*y + t^7.1*y + t^7.34*y + 3*t^7.35*y + 3*t^7.6*y + t^7.84*y + 2*t^7.85*y + t^7.86*y + 2*t^8.1*y - 2*t^8.25*y - t^8.26*y + t^8.74*y + 4*t^8.75*y + 4*t^8.99*y t^2.05/g2^7 + t^2.05/(g1^2*g2^4) + t^2.3/g2^2 + (g2*t^2.3)/g1^2 + g2^3*t^2.55 + t^3.45/g1^2 + t^3.45/g2^3 + (g2^5*t^3.69)/g1^2 + g2^2*t^3.7 + t^4.09/(g1^4*g2^8) + t^4.1/(g1^2*g2^11) + t^4.11/g2^14 + t^4.34/(g1^4*g2^3) + t^4.35/g2^9 + (2*t^4.35)/(g1^2*g2^6) + (g2^2*t^4.59)/g1^4 + (2*t^4.6)/g2^4 + (2*t^4.6)/(g1^2*g2) + (g2^4*t^4.84)/g1^2 + 2*g2*t^4.85 + g2^6*t^5.1 + t^5.49/(g1^4*g2^4) + t^5.5/g2^10 + (2*t^5.5)/(g1^2*g2^7) + (2*g2*t^5.74)/g1^4 + t^5.75/g2^5 + (3*t^5.75)/(g1^2*g2^2) + (2*g2^3*t^5.99)/g1^2 + (g2^6*t^5.99)/g1^4 - t^6. - (g1^2*t^6.01)/g2^3 + t^6.14/(g1^6*g2^12) + t^6.15/(g1^2*g2^18) + t^6.15/(g1^4*g2^15) + t^6.16/g2^21 + (g2^8*t^6.24)/g1^2 - g1^2*g2^2*t^6.25 + t^6.39/(g1^6*g2^7) + (2*t^6.4)/(g1^2*g2^13) + (2*t^6.4)/(g1^4*g2^10) + t^6.41/g2^16 + (3*t^6.64)/(g1^4*g2^5) + t^6.64/(g1^6*g2^2) + (2*t^6.65)/g2^11 + (3*t^6.65)/(g1^2*g2^8) + (3*t^6.89)/g1^4 + (g2^3*t^6.89)/g1^6 + (3*t^6.9)/g2^6 + (4*t^6.9)/(g1^2*g2^3) + (3*g2^2*t^7.14)/g1^2 + (2*g2^5*t^7.14)/g1^4 + t^7.15/g2 - (g1^2*t^7.16)/g2^4 + (g2^7*t^7.39)/g1^2 + (g2^10*t^7.39)/g1^4 - 2*g1^2*g2*t^7.4 - g2^4*t^7.4 + t^7.54/(g1^6*g2^8) + (2*t^7.55)/(g1^2*g2^14) + (2*t^7.55)/(g1^4*g2^11) + t^7.56/g2^17 - g1^2*g2^6*t^7.65 + (4*t^7.79)/(g1^4*g2^6) + (2*t^7.79)/(g1^6*g2^3) + (3*t^7.8)/(g1^2*g2^9) + t^7.81/g2^12 + (4*t^8.04)/(g1^4*g2) + (2*g2^2*t^8.04)/g1^6 - (2*t^8.05)/g2^7 + t^8.05/(g1^2*g2^4) - (g1^2*t^8.06)/g2^10 + t^8.19/(g1^8*g2^16) + t^8.2/(g1^4*g2^22) + t^8.2/(g1^6*g2^19) + t^8.21/g2^28 + t^8.21/(g1^2*g2^25) + (g2^7*t^8.28)/g1^6 + (3*g2^4*t^8.29)/g1^4 - (3*t^8.3)/g2^2 - (2*g1^2*t^8.31)/g2^5 + (2*t^8.44)/(g1^6*g2^14) + t^8.44/(g1^8*g2^11) + (2*t^8.45)/(g1^2*g2^20) + (2*t^8.45)/(g1^4*g2^17) + t^8.46/g2^23 + (g2^6*t^8.54)/g1^2 + (g2^9*t^8.54)/g1^4 - 3*g1^2*t^8.55 - 4*g2^3*t^8.55 + (3*t^8.69)/(g1^6*g2^9) + t^8.69/(g1^8*g2^6) + (3*t^8.7)/(g1^2*g2^15) + (4*t^8.7)/(g1^4*g2^12) + (2*t^8.71)/g2^18 + (g2^11*t^8.79)/g1^2 - 2*g1^2*g2^5*t^8.8 - g2^8*t^8.8 + t^8.93/(g1^8*g2) + (6*t^8.94)/(g1^4*g2^7) + (4*t^8.94)/(g1^6*g2^4) + (5*t^8.95)/(g1^2*g2^10) + (3*t^8.96)/g2^13 - t^4.15/(g2*y) - t^6.2/(g2^8*y) - t^6.2/(g1^2*g2^5*y) - t^6.45/(g1^2*y) - t^6.45/(g2^3*y) + t^7.1/(g1^2*g2^11*y) + t^7.34/(g1^4*g2^3*y) + t^7.35/(g2^9*y) + (2*t^7.35)/(g1^2*g2^6*y) + t^7.6/(g2^4*y) + (2*t^7.6)/(g1^2*g2*y) + (g2^4*t^7.84)/(g1^2*y) + (2*g2*t^7.85)/y + (g1^2*t^7.86)/(g2^2*y) + (g1^2*g2^3*t^8.1)/y + (g2^6*t^8.1)/y - t^8.25/(g1^2*g2^12*y) - t^8.25/(g1^4*g2^9*y) - t^8.26/(g2^15*y) + (g2*t^8.74)/(g1^4*y) + t^8.75/(g2^5*y) + (3*t^8.75)/(g1^2*g2^2*y) + (3*g2^3*t^8.99)/(g1^2*y) + (g2^6*t^8.99)/(g1^4*y) - (t^4.15*y)/g2 - (t^6.2*y)/g2^8 - (t^6.2*y)/(g1^2*g2^5) - (t^6.45*y)/g1^2 - (t^6.45*y)/g2^3 + (t^7.1*y)/(g1^2*g2^11) + (t^7.34*y)/(g1^4*g2^3) + (t^7.35*y)/g2^9 + (2*t^7.35*y)/(g1^2*g2^6) + (t^7.6*y)/g2^4 + (2*t^7.6*y)/(g1^2*g2) + (g2^4*t^7.84*y)/g1^2 + 2*g2*t^7.85*y + (g1^2*t^7.86*y)/g2^2 + g1^2*g2^3*t^8.1*y + g2^6*t^8.1*y - (t^8.25*y)/(g1^2*g2^12) - (t^8.25*y)/(g1^4*g2^9) - (t^8.26*y)/g2^15 + (g2*t^8.74*y)/g1^4 + (t^8.75*y)/g2^5 + (3*t^8.75*y)/(g1^2*g2^2) + (3*g2^3*t^8.99*y)/g1^2 + (g2^6*t^8.99*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46678 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_1\tilde{q}_2$ 0.6414 0.7996 0.8022 [X:[1.6177], M:[0.3823, 0.676, 1.1468, 0.8532, 0.7046], q:[0.8831, 0.7346], qb:[0.4409, 0.4122], phi:[0.3823]] t^2.03 + t^2.11 + t^2.29 + t^2.56 + t^3.44 + t^3.53 + t^3.62 + t^3.71 + t^3.79 + t^4.06 + t^4.14 + t^4.23 + t^4.32 + t^4.41 + 2*t^4.59 + t^4.67 + 2*t^4.85 + t^5.12 + t^5.47 + 2*t^5.55 + t^5.64 + t^5.65 + 2*t^5.73 + 2*t^5.82 + t^5.91 - t^6. - t^4.15/y - t^4.15*y detail